900 resultados para organ donation
Resumo:
Recent reports have suggested the possible association of status epilepticus and multiple organ system failure. The purpose of this case control study was to investigate this association and to identify factors that predispose individuals with status epilepticus (SE) or aborted status epilepticus (ASE) to develop multiple organ system failure (MOSF) or multiple organ system dysfunction (MODS).^ For the purpose of the study, definitions of SE, ASE, MOSF, and MODS were operationalized as follows: SE was defined as any seizure lasting for a duration of $\ge$30 minutes or intermittent seizures lasting for $\ge$30 minutes from which the patient does not regain consciousness. ASE was defined as any seizure lasting for a duration of $\ge$10 minutes but $<$30 minutes and which was aborted as a result of a medical intervention. MOSF was defined as the failure of $\ge$2 organ systems in the same patient; organ system failure was said to be present whenever standard MOSF criteria were met. MODS was defined as the dysfunction of $\ge$2 organ systems in the same patient; organ system dysfunction was said to be present, whenever the monitor(s) of that organ's function exceeded the normal range for the physiological or laboratory parameters.^ Medical records of 686 individuals between the age of 5 and 44 years, with history of seizures needing hospitalization at the Texas Children's Hospital or Methodist Hospital, Houston, Texas, between 1991-95 were reviewed and 100 individuals with SE/ASE were identified. Of these 100 individuals with SE/ASE, 45 developed MOSF/MODS during their hospitalization and 9 of these individuals died. Using multivariate analyses, it was found that adult individuals who had an "acute" etiology of their seizure disorder (OR = 5.23; 95%CI: 0.41, 66.24) and children who had a "remote" etiology of their seizure disorder (OR = 3.92; 95%CI: 0.53, 29.22), were more likely to develop MOSF/MODS compared with those who had other etiologies of the seizure disorder. Individuals with SE lasting more than one hour were more likely to develop MOSF/MODS compared with individuals with SE lasting less than 1 hour (OR = 6.51; 95%CI: 1.63, 25.92). Individuals who presented with the SE/ASE episode as their first seizure episode were more likely to develop MOSF/MODS compared to those with a previous history of seizure episodes (OR = 1.78; 95%CI: 0.36, 8.82).^ The major limitations of this study includes the relatively small sample size and the study being performed in only two institutions. However, this is the first study of this kind and should therefore be viewed as largely exploratory in nature. Future studies should investigate the relationship of the risk factors identified in this study using a larger number of institutions and patients. ^
Resumo:
Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.
Resumo:
BACKGROUND Cytomegalovirus (CMV) replication has been associated with more risk for solid organ graft rejection. We wondered whether this association still holds when patients at risk receive prophylactic treatment for CMV. METHODS We correlated CMV infection, biopsy-proven graft rejection, and graft loss in 1,414 patients receiving heart (n=97), kidney (n=917), liver (n=237), or lung (n=163) allografts reported to the Swiss Transplant Cohort Study. RESULTS Recipients of all organs were at an increased risk for biopsy-proven graft rejection within 4 weeks after detection of CMV replication (hazard ratio [HR] after heart transplantation, 2.60; 95% confidence interval [CI], 1.34-4.94, P<0.001; HR after kidney transplantation, 1.58; 95% CI, 1.16-2.16, P=0.02; HR after liver transplantation, 2.21; 95% CI, 1.53-3.17, P<0.001; HR after lung transplantation, 5.83; 95% CI, 3.12-10.9, P<0.001. Relative hazards were comparable in patients with asymptomatic or symptomatic CMV infection. The CMV donor or recipient serological constellation also predicted the incidence of graft rejection after liver and lung transplantation, with significantly higher rates of rejection in transplants in which donor or recipient were CMV seropositive (non-D-/R-), compared with D- transplant or R- transplant (HR, 3.05; P=0.002 for liver and HR, 2.42; P=0.01 for lung transplants). Finally, graft loss occurred more frequently in non-D- or non-R- compared with D- transplant or R- transplant in all organs analyzed. Valganciclovir prophylactic treatment seemed to delay, but not prevent, graft loss in non-D- or non-R- transplants. CONCLUSION Cytomegalovirus replication and donor or recipient seroconstellation remains associated with graft rejection and graft loss in the era of prophylactic CMV treatment.
Resumo:
BACKGROUND Polymorphisms in the interferon-λ (IFNL) 3/4 region have been associated with reduced hepatitis C virus clearance. We explored the role of such polymorphisms on the incidence of CMV infection in solid-organ transplant (SOT) recipients. METHODS Caucasian patients participating in the Swiss Transplant Cohort Study in 2008-2011 were included. A novel functional TT/-G polymorphism (rs368234815) in the CpG region upstream of IFNL3 was investigated. RESULTS A total of 840 SOT recipients at risk for CMV were included, among whom 373 (44%) received antiviral prophylaxis. The 12-months cumulative incidence of CMV replication and disease were 0.44 and 0.08, respectively. Patient homozygous for the minor rs368234815 allele (-G/-G) tended to have a higher cumulative incidence of CMV replication (SHR=1.30 [95%CI 0.97-1.74], P=0.07) compared to other patients (TT/TT or TT/-G). The association was significant among patients followed by a preemptive approach (SHR=1.46 [1.01-2.12], P=0.047), especially in patients receiving an organ from a seropositive donor (D+, SHR=1.92 [95%CI 1.30-2.85], P=0.001), but not among those who received antiviral prophylaxis (SHR=1.13 [95%CI 0.70-1.83], P=0.6). These associations remained significant in multivariate competing risk regression models. CONCLUSIONS Polymorphisms in the IFNL3/4 region influence susceptibility to CMV replication in SOT recipients, particularly in patients not receiving antiviral prophylaxis.
Resumo:
BACKGROUND Single nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell (HSCT) but not solid organ transplant (SOT) recipients. METHODS 24 SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidneys, 190 liver, 102 lungs, 79 hearts, 15 other) from the Swiss Transplant Cohort Study. Association between SNPs and the endpoint were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by ELISA in PBMCs from healthy volunteers and correlated with relevant genotypes. RESULTS Mold colonization (N=45) and proven/probable IMI (N=26) were associated with polymorphisms in interleukin-1 beta (IL1B, rs16944; log-rank test, recessive mode, colonization P=0.001 and IMI P=0.00005), interleukin-1 receptor antagonist (IL1RN, rs419598; P=0.01 and P=0.02) and β-defensin-1 (DEFB1, rs1800972; P=0.001 and P=0.0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (IL1B rs16944 P=0.002; DEFB1 rs1800972 P=0.01). Presence of two copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced IL-1β and TNFα secretion by PBMCs. CONCLUSIONS Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification.
Resumo:
Introduction Previous studies on the influence of torsion and combined torsion-compression loading revealed a positive effect on the cell viability when a repetitive short-term torsion was applied at a physiological magnitude to intervertebral disc organ culture.1 However, after an extended period (8 hours) of combined torsion-compression loading, substantial cell death was detected in the nucleus pulposus (NP).2 In this follow-up study, we aimed to investigate the relationship, if any, between the duration of torsion applied to the intervertebral disc (IVD) and the level of NP cell viability. Materials and Methods Bovine caudal discs were harvested and cultured in a custom-built multiaxis dynamic loading bioreactor.2 Torsion (± 2 degrees) was applied to the samples at a frequency of 0.2 Hz. Torsion was applied for durations of 0, 1, 4, and 8 h/d, repeated over 7 days. After the last day of loading, disc tissue was dissected for analysis of cell viability and gene expression. Results Disc NP cell viability remained above 85% after torsional loading for 0, 1, or 4 h/d. Viability was statistical significantly reduced to below 70% when torsion was applied for 8 h/d (p = 0.03) (Table 1). The daily duration of torsional loading did not affect the AF cell viability (> 80% for all loading durations). The trend of collagen 2 gene upregulation and matrix metalloproteases 13 downregulation with an increasing duration of torsion was observed in both NP and AF (Fig. 1).Conclusion We have demonstrated that an extended duration of torsion could inhibit the survival of NP cells within the IVD in organ culture. Acknowledgments Funds from the Orthopedic Department of the Insel University Hospital of Bern and a private donation from Prof. Dr. Paul Heini, Spine Surgeon, Sonnenhof Clinic Bern were received to support this work. Disclosure of Interest None declared References References 1 Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short-term cyclic torsion. Spine 2011;36(24):2021–2030 2 Chan SC, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS ONE 2013;8(8):e72489
Resumo:
The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.
Resumo:
Reproduktion
CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture.
Resumo:
Release of chemotactic factors in response to tissue damage has been described for different musculoskeletal tissues, including the intervertebral disc (IVD). This study investigated the chemoattractants that are released by induced degenerative IVDs and may be involved in recruiting mesenchymal stem cells (MSCs). Bovine caudal discs were cultured within a bioreactor and loaded under conditions that mimicked physiological or degenerative settings. Between days 4-6, medium was replaced by PBS, which was subsequently used for proteomic, ELISA and immunoprecipitation analyses of secreted chemokines and cytokines. A Boyden chamber assay was used to observe human MSC migration towards native and chemokine depleted media. Gene expression levels of chemokine receptors in human MSCs were analysed, and CCL5 was localised in bovine and human IVD by immunohistochemistry. Proteomic analysis revealed the presence of CCL5 and CXCL6 within conditioned media. Higher concentrations of CCL5 were found in the degenerative media, and a relationship was found between interleukin-1β and CCL5 concentration. Chemokine immunoprecipitation showed that MSCs had a significantly reduced chemotactic migration towards CCL5-immunoprecipitated and CCL5/CXCL6 co-immunoprecipitated media, whilst CXCL6 depletion did not change MSC chemotaxis. MSCs showed a significant increase in mRNA expression of the CCL5 receptors, CCR1 and CCR4, upon culture in degenerative media. Furthermore, CCL5 was identified in bovine and human disc tissue by immunohistochemistry. Hence, CCL5 may be a key chemoattractant that is produced and released by the intervertebral disc cells. Therefore, these factors could be used to enhance stem/progenitor cell mobilisation in regenerative therapies for early stages of disc degeneration.
Resumo:
OBJECTIVES The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability; however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC); brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury; however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. METHODS Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF); 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. RESULTS Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively; P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%; P < 0.01 for all) in LoR subgroups. CONCLUSIONS Effects of MPC depend on energy substrate availability; MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.
Resumo:
Results of previous work suggest a preference of adult observers for cute compared to less cute infants. In Study 1 we investigated whether the preference for cute infants depends on the ethnicity and species of the infant. We simultaneously presented two faces (one cute and one less cute) and asked Caucasian participants to choose the infant to whom they would rather give a toy (Task 1) and which infant they would rather adopt (Task 2). The infants were Caucasian or African human babies, or dog puppies. For all face categories and in both tasks we found a strong preference for cute infants. A possible reason for preferring cute infants may be that cute infants look healthier than less cute infants. To investigate whether cuteness is associated with the assessment of health we conducted Study 2. Faces of Caucasian and African infants and dog puppies were rated for cuteness and health. The findings revealed a significant relationship between health and cuteness evaluation across all stimuli. We suggest that one reason why cute infants are preferred might be because they are perceived as being healthier.
Resumo:
composed, arr. and publ. by Fred. E. Kitziger