945 resultados para open robot control
Resumo:
L’objectiu del treball és emular virtualment l’entorn de treball del robot Stäubli Tx60 quehi ha al laboratori de robòtica de la UdG (dins les possibilitats que ofereix el software adquirit).Aquest laboratori intenta reproduir un entorn industrial de treball en el qual es realitzal’assemblatge d’un conjunt de manera cent per cent automatitzada.En una primera fase, s’ha dissenyat en tres dimensions tot l’entorn de treball que hi hadisponible al laboratori a través del software CAD SolidWorks. Cada un dels conjuntsque conformen l’estació de treball s’ha dissenyat de manera independent.Posteriorment s’introdueixen tots els elements dissenyats dins el software StäubliRobotics Suite 2013. Amb tot l’anterior, cal remarcar que l’objectiu principal del treball consta de duesetapes. Inicialment es dissenya el model 3D de l’entorn de treball a través del software SolidWorks i s’introdueix dins el software Stäubli Robotics Suite 2013. Enuna segona etapa, es realitza un manual d’ús del nou software de robòtica
Resumo:
Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function.
Resumo:
BACKGROUND: Fatigue is likely to be an important limiting factor in adolescents with spastic cerebral palsy (CP). AIMS: To determine the effects of walking-induced fatigue on postural control adjustments in adolescents with unilateral CP and their typically developing (TD) peers. METHODS: Ten adolescents with CP (14.2±1.7yr) and 10 age-, weight- and height-matched TD adolescents (14.1±1.9yr) walked for 15min on a treadmill at their preferred walking speed. Before and after this task, voluntary strength capacity of knee extensors (MVC) and postural control were evaluated in 3 conditions: eyes open (EO), eyes closed (EC) and with dual cognitive task (EODT). RESULTS: After walking, MVC decreased significantly in CP (-11%, P<0.05) but not in TD. The CoP area was only significantly increased in CP (90%, 34% and 60% for EO, EC and EODT conditions, respectively). The CoP length was significantly increased in the EO condition in CP and TD (20% and 21%) and was significantly increased in the EODT condition by 18% in CP only. CONCLUSIONS: Unlike TD adolescents, treadmill walking for 15min at their preferred speed lead to significant knee extensor strength losses and impairments in postural control in adolescents with unilateral spastic CP.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
La idea del proyecto viene del concepto de “fábricas del futuro”, donde las barreras entre robots y humanos se rompen para que la colaboración entre ambos sea como en un equipo. Para la realización de este proyecto se ha utilizado el brazo robótico IRB120 de la marca ABB de 6 Grados de libertad, Matlab y el software Robot Studio. El Objetivo principal de este proyecto es establecer el protocolo de comunicación trabajador-robot mediante imágenes. El trabajador debería poder controlar el robot mediante dibujos realizados en la mesa de trabajo. En el desarrollo de la comunicación trabajador-robot cabe distinguir tres partes: · El análisis y tratamiento de imágenes para el cual se ha utilizado el software Matlab. · Transmisión de los datos desde Matlab al robot. · Programación de las acciones a realizar por el robot mediante el software “Robot Studio”. Con el protocolo de comunicación desarrollado y las imágenes realizadas por el trabajador el robot es capaz de detectar lo siguiente: · la herramienta que debe utilizar (rotulador, boli o ventosa) · si lo que tiene que dibujar en la mesa de trabajo son puntos o trazo continuo. · la localización de los puntos o del trazo continuo en la mesa de trabajo. Se ha alcanzado el objetivo propuesto con éxito, el protocolo de comunicación trabajador-robot mediante imágenes ha sido establecido. Mediante el análisis y tratamiento de imágenes se puede conseguir la información necesaria para que el robot pueda ejecutar las acciones requeridas por el trabajador.
Resumo:
The provision of Internet access to large numbers has traditionally been under the control of operators, who have built closed access networks for connecting customers. As the access network (i.e. the last mile to the customer) is generally the most expensive part of the network because of the vast amount of cable required, many operators have been reluctant to build access networks in rural areas. There are problems also in urban areas, as incumbent operators may use various tactics to make it difficult for competitors to enter the market. Open access networking, where the goal is to connect multiple operators and other types of service providers to a shared network, changes the way in which networks are used. This change in network structure dismantles vertical integration in service provision and enables true competition as no service provider can prevent others fromcompeting in the open access network. This thesis describes the development from traditional closed access networks towards open access networking and analyses different types of open access solution. The thesis introduces a new open access network approach (The Lappeenranta Model) in greater detail. The Lappeenranta Model is compared to other types of open access networks. The thesis shows that end users and service providers see local open access and services as beneficial. In addition, the thesis discusses open access networking in a multidisciplinary fashion, focusing on the real-world challenges of open access networks.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS
Resumo:
The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.
Resumo:
Objective: to investigate the effects of preoperative fasting abbreviation with oral supplementation with carbohydrate in the evolution of grip strength in patients undergoing cholecystectomy by laparotomy. Methods : we conducted a clinical, randomizeddouble blind study with adult female patients, aged 18-60 years. Patients were divided into two groups: Control Group, with fasting prescription 6-8h until the time of operation; and Intervention Group, which received prescription of fasting for solids 6-8h before surgery, but ingested an oral supplement containing 12.5% carbohydrate, six (400ml) and two (200ml) hours before theprocedure. The handgrip strength was measured in both hands in both groups, at patient's admission (6h before surgery), the immediate pre-operative time (1h before surgery) and 12-18h postoperatively. Results : we analyzed 27 patients, 14 in the intervention group and 13 in the control group. There was no mortality. The handgrip strength (mean [standard deviation]) was significantly higher in the intervention group in the three periods studied, in at least one hand: preoperatively in the dominant hand (27.8 [2.6] vs 24.1 [3.7] kg; p=0.04), in the immediate preoperative in both hands, and postoperatively in the non-dominant hand (28.5 [3.0] vs 21.3 [5.9] kg; p=0.01). Conclusion : the abbreviation of preoperative fasting to two hours with drink containing carbohydrate improves muscle function in the perioperative period.
Resumo:
The dynamics of flexible systems, such as robot manipulators , mechanical chains or multibody systems in general, is becoming increasingly important in engineering. This article deals with some nonlinearities that arise in the study of dynamics and control of multibody systems in connection to large rotations. Specifically, a numerical scheme that adresses the conservation of fundamental constants is presented in order to analyse the control-structure interaction problems.
Resumo:
It is presented a test bed applied to studies on dynamics, control, and navigation of mobile robots. A cargo ship scale model was chosen, which can be radio-controlled or operated autonomously through an embedded control system. A control program, which manages on board mission execution, is implemented on a microcontroller. Navigation is based on an electronic compass, which includes automatic compensation for pitch and roll motions. Heading control loop is based on this sensor, and on a rudder positioning system. A propulsion control system is also implemented. Typical manoeuvres as the turning test and "zig-zag", were implemented and tested. They are included on a manoeuvre library, and can be accessed independently or in combined modes. The embedded system is also in charge of signal acquisition and storing during the missions. It is possible to analyse experiments on identification of ship dynamics, control, and navigation, through the data transferred to a PC by serial communication. Navigation is going to be improved by including inertial sensors on board, and a DGPS. Preliminary tests are aimed to ship identification, and manoeuvrability, using free model tests. Future steps include extending this system for developing other mobile robots as, ROVs, AUVs, and aerial vehicles.
Resumo:
Presentation at the Nordic Perspectives on Open Access and Open Science seminar, Helsinki, October 15, 2013