893 resultados para ontological theory of expressiveness
Resumo:
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
Resumo:
In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.
Resumo:
Background: Accommodating Interruptions is a theory that emerged in the context of young people who have asthma. A background to the prevalence and management of asthma in Ireland is given to situate the theory. Ireland has the fourth highest incidence of asthma in the world, with almost one in five Irish young people having asthma. Although national and international asthma management guidelines exist it is accepted that the symptom control of asthma among the young people population is poor. Aim: The aim of this research is to investigate the lives of young people who have asthma, to allow for a deeper understanding of the issues affecting them. Methods: This research was undertaken using a Classic Grounded Theory approach. It is a systematic approach to allowing conceptual emergence from data in generating a theory that explains behaviour in resolving the participant’s main concern. The data were collected through in-depth interviews with young people aged 11-16 years who had asthma for over one year. Data were also collected from participant diaries. Constant comparative analysis, theoretical coding and memo writing were used to develop the theory. Results: The theory explains how young people resolve their main concern of being restricted, by maximizing their participation and inclusion in activities, events and relationships in spite of their asthma. They achieve this by accommodating interruptions in their lives in minimizing the effects of asthma on their everyday lives. Conclusion: The theory of accommodating interruptions explains young people’s asthma management behaviours in a new way. It allows us to understand how and why young people behave the way they do in order minimise the effect of asthma on their lives. The theory adds to the body of knowledge on young people with asthma and challenges some viewpoints regarding their behaviours.
Resumo:
This research aimed to investigate the main concern facing nurses in minimising risk within the perioperative setting and to generate an explanatory substantive theory of how they resolve this through anticipatory vigilance. In the context of the perioperative setting, nurses encounter challenges in minimising risks for their patients on a continuous basis. Current explanations of minimising risk in the perioperative setting offers insights into how perioperative nurses undertake their work. Currently research in minimising risk is broadly related to dealing with errors as opposed to preventing them. To date, little is known about how perioperative nurses practice and maintain safety. This study was guided by the principles of classic grounded theory as described by Glaser (1978, 1998, 2001). Data was collected through individual unstructured interviews with thirty seven perioperative nurses (with varying lengths of experiences of working in the area) and thirty three hours of non-participant observation within eight different perioperative settings in the Republic of Ireland. Data was simultaneously collected and analysed. The theory of anticipatory vigilance emerged as the pattern of behaviour through which nurse’s deal with their main concern of minimising risk in a high risk setting. Anticipatory vigilance is enacted through orchestrating, routinising and momentary adapting within a spirit of trusting relations within the substantive area of the perioperative setting. This theory of offers an explanation on how nurses resolve their main concern of minimising risk within the perioperative setting. The theory of anticipatory vigilance will be useful to nurses in providing a comprehensive framework of explanation and understanding on how nurses deal with minimising risk in the perioperative setting. The theory links perioperative nursing, risk and vigilance together. Clinical improvements through understanding and awareness of the theory of anticipatory vigilance will result in an improved quality environment, leading to safe patient outcomes.
Resumo:
Using a classic grounded theory methodology (CGT), this study explores the phenomenon of moral shielding within mental health multidisciplinary teams (MDTS). The study was located within three catchment areas engaged in acute mental health service practice. The main concern identified was the maintenance of a sense of personal integrity during situational binds. Through theoretical sampling thirty two practitioners, including; doctors, nurses, social workers, occupational therapists, counsellors and psychologists, where interviewed face to face. In addition, emergent concepts were identified through observation of MDTs in clinical and research practice. Following a classic grounded theory methodology, data collection and analysis occurred simultaneously. A constant comparative approach was adopted and resulted in the immergence of three sub- core categories; moral abdication, moral hinting and pseudo-compliance. Moral abdication seeks to re-position within an event in order to avoid or deflect the initial obligation to act, it is a strategy used to remove or reduce moral ownership. Moral gauging represents the monitoring of an event with the goal of judging the congruence of personal principles and commitments with that of other practitioners. This strategy is enacted in a bid to seek allies for the support of a given moral position. Pseudo-compliance represents behaviour that hides desired principles and commitments in order to shield them from challenge. This strategy portrays agreement with the dominant position within the MDT, whilst holding a contrary position. It seeks to preserve a reservoir of emotional energy required to maintain a sense of personal integrity. Practitioners who were successful in enacting moral shielding were found to not experience significant emotional distress associated with the phenomenon of moral distress; suggesting that these practitioners had found mechanisms to manage situational binds that threatened their sense of personal integrity.
Resumo:
Dilute bismide alloys, containing small fractions of bismuth (Bi), have recently attracted interest due to their potential for applications in a range of semiconductor devices. Experiments have revealed that dilute bismide alloys such as GaBixAs1−x, in which a small fraction x of the atoms in the III-V semiconductor GaAs are replaced by Bi, exhibit a number of unusual and unique properties. For example, the band gap energy (E g) decreases rapidly with increasing Bi composition x, by up to 90 meV per % Bi replacing As in the alloy. This band gap reduction is accompanied by a strong increase in the spin-orbit-splitting energy (ΔSO) with increasing x, and both E g and ΔSO are characterised by strong, composition-dependent bowing. The existence of a ΔSO > E g regime in the GaBixAs1−x alloy has been demonstrated for x ≳10%, a band structure condition which is promising for the development of highly efficient, temperature stable semiconductor lasers that could lead to large energy savings in future optical communication networks. In addition to their potential for specific applications, dilute bismide alloys have also attracted interest from a fundamental perspective due to their unique properties. In this thesis we develop the theory of the electronic and optical properties of dilute bismide alloys. By adopting a multi-scale approach encompassing atomistic calculations of the electronic structure using the semi-empirical tight-binding method, as well as continuum calculations based on the k•p method, we develop a fundamental understanding of this unusual class of semiconductor alloys and identify general material properties which are promising for applications in semiconductor optoelectronic and photovoltaic devices. By performing detailed supercell calculations on both ordered and disordered alloys we explicitly demonstrate that Bi atoms act as isovalent impurities when incorporated in dilute quantities in III-V (In)GaAs(P) materials, strongly perturbing the electronic structure of the valence band. We identify and quantify the causes and consequences of the unusual electronic properties of GaBixAs1−x and related alloys, and our analysis is reinforced throughout by a series of detailed comparisons to the results of experimental measurements. Our k•p models of the band structure of GaBixAs1−x and related alloys, which we derive directly from detailed atomistic calculations, are ideally suited to the study of dilute bismide-based devices. We focus in the latter part of the thesis on calculations of the electronic and optical properties of dilute bismide quantum well lasers. In addition to developing an understanding of the effects of Bi incorporation on the operational characteristics of semiconductor lasers, we also present calculations which have been used explicitly in designing and optimising the first generation of GaBixAs1−x-based devices.
Resumo:
A search result provided by existing digital library and web search systems typically comprises only a prioritised list of possible publications or web pages that meet the search criteria, possibly with excerpts and possibly with search terms highlighted. The research in progress reported in this poster contributes to a larger research effort to provide a readable summary of search results that synthesise relevant publications or web pages to provide results that meet four C’s: comprehensive, concise, coherent, and correct, as a more useful alternative to un-synthesised result lists. The scope of this research is limited to searching for and synthesising Design Science Research (DSR) publications that present the results of DSR, as an example problem domain.
Resumo:
This paper introduces a new model of exchange: networks, rather than markets, of buyers and sellers. It begins with the empirically motivated premise that a buyer and seller must have a relationship, a "link," to exchange goods. Networks - buyers, sellers, and the pattern of links connecting them - are common exchange environments. This paper develops a methodology to study network structures and explains why agents may form networks. In a model that captures characteristics of a variety of industries, the paper shows that buyers and sellers, acting strategically in their own self-interests, can form the network structures that maximize overall welfare.
A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula
Resumo:
Continuing our development of a mathematical theory of stochastic microlensing, we study the random shear and expected number of random lensed images of different types. In particular, we characterize the first three leading terms in the asymptotic expression of the joint probability density function (pdf) of the random shear tensor due to point masses in the limit of an infinite number of stars. Up to this order, the pdf depends on the magnitude of the shear tensor, the optical depth, and the mean number of stars through a combination of radial position and the star's mass. As a consequence, the pdf's of the shear components are seen to converge, in the limit of an infinite number of stars, to shifted Cauchy distributions, which shows that the shear components have heavy tails in that limit. The asymptotic pdf of the shear magnitude in the limit of an infinite number of stars is also presented. All the results on the random microlensing shear are given for a general point in the lens plane. Extending to the general random distributions (not necessarily uniform) of the lenses, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of global expected number of positive parity images due to a general lensing map. Applying the result to microlensing, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars, where the stars are uniformly distributed. This global expectation is bounded, while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars. © 2009 American Institute of Physics.
Resumo:
Hannah Arendt's theory of political judgment has been an ongoing perplexity among scholars who have written on her. As a result, her theory of judgment is often treated as a suggestive but unfinished aspect of her thought. Drawing on a wider array of sources than is commonly utilized, I argue that her theory of political judgment was in fact the heart of her work. Arendt's project, in other words, centered around reestablishing the possibility of political judgment in a modern world that historically has progressively undermined it. In the dissertation, I systematically develop an account of Arendt's fundamentally political and non-sovereign notion of judgment. We discover that individual judgment is not arbitrary, and that even in the complex circumstances of the modern world there are valid structures of judgment which can be developed and dependably relied upon. The result of this work articulates a theory of practical reason which is highly compelling: it provides orientation for human agency which does not rob it of its free and spontaneous character; shows how we can improve and cultivate our political judgment; and points the way toward the profoundly intersubjective form of political philosophy Arendt ultimately hoped to develop.
Resumo:
We present a theory of hypoellipticity and unique ergodicity for semilinear parabolic stochastic PDEs with "polynomial" nonlinearities and additive noise, considered as abstract evolution equations in some Hilbert space. It is shown that if Hörmander's bracket condition holds at every point of this Hilbert space, then a lower bound on the Malliavin covariance operatorμt can be obtained. Informally, this bound can be read as "Fix any finite-dimensional projection on a subspace of sufficiently regular functions. Then the eigenfunctions of μt with small eigenvalues have only a very small component in the image of Π." We also show how to use a priori bounds on the solutions to the equation to obtain good control on the dependency of the bounds on the Malliavin matrix on the initial condition. These bounds are sufficient in many cases to obtain the asymptotic strong Feller property introduced in [HM06]. One of the main novel technical tools is an almost sure bound from below on the size of "Wiener polynomials," where the coefficients are possibly non-adapted stochastic processes satisfying a Lips chitz condition. By exploiting the polynomial structure of the equations, this result can be used to replace Norris' lemma, which is unavailable in the present context. We conclude by showing that the two-dimensional stochastic Navier-Stokes equations and a large class of reaction-diffusion equations fit the framework of our theory.
Resumo:
An event memory is a mental construction of a scene recalled as a single occurrence. It therefore requires the hippocampus and ventral visual stream needed for all scene construction. The construction need not come with a sense of reliving or be made by a participant in the event, and it can be a summary of occurrences from more than one encoding. The mental construction, or physical rendering, of any scene must be done from a specific location and time; this introduces a "self" located in space and time, which is a necessary, but need not be a sufficient, condition for a sense of reliving. We base our theory on scene construction rather than reliving because this allows the integration of many literatures and because there is more accumulated knowledge about scene construction's phenomenology, behavior, and neural basis. Event memory differs from episodic memory in that it does not conflate the independent dimensions of whether or not a memory is relived, is about the self, is recalled voluntarily, or is based on a single encoding with whether it is recalled as a single occurrence of a scene. Thus, we argue that event memory provides a clearer contrast to semantic memory, which also can be about the self, be recalled voluntarily, and be from a unique encoding; allows for a more comprehensive dimensional account of the structure of explicit memory; and better accounts for laboratory and real-world behavioral and neural results, including those from neuropsychology and neuroimaging, than does episodic memory.
Resumo:
BACKGROUND: Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. CONCLUSIONS/SIGNIFICANCE: Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.
Resumo:
Lennart Åqvist (1992) proposed a logical theory of legal evidence, based on the Bolding-Ekelöf of degrees of evidential strength. This paper reformulates Åqvist's model in terms of the probabilistic version of the kappa calculus. Proving its acceptability in the legal context is beyond the present scope, but the epistemological debate about Bayesian Law isclearly relevant. While the present model is a possible link to that lineof inquiry, we offer some considerations about the broader picture of thepotential of AI & Law in the evidentiary context. Whereas probabilisticreasoning is well-researched in AI, calculations about the threshold ofpersuasion in litigation, whatever their value, are just the tip of theiceberg. The bulk of the modeling desiderata is arguably elsewhere, if one isto ideally make the most of AI's distinctive contribution as envisaged forlegal evidence research.
Resumo:
Tony Mann provides a review of the book: Theory of Games and Economic Behavior, John von Neumann and Oskar Morgenstern, Princeton University Press, 1944.