962 resultados para oligotrophic plateau lake
Resumo:
Clear Lake, Iowa's third largest natural lake, is a premier natural resource and popular recreational destination in north central Iowa. Despite the lake's already strong recreational use, water quality concerns have not allowed the lake to reach its full potential. Clear Lake is listed on Iowa's Draft 2010 303(d) Impaired Waters List for algae, bacteria, and turbidity. Many restoration practices have been implemented to treat the algae and turbidity impairment, but few practices have been installed to treat bacteria. Reducing beach bacteria levels is a priority of the lake restoration partners. Federal, State, and local partners have invested more than $20 million in lake and watershed restoration efforts to improve water clarity and quality. These partners have a strong desire to ensure high bacteria levels at public swim beaches do not undermine the other water quality improvements. Recent bacteria source tracking completed by the State Hygienic Laboratory indicates that Canada Geese are a major contributor of bacteria loading to the Clear Lake swim beaches. Other potential sources include unpermitted septic systems in the watershed. The grant request proposes to reduce bacteria levels at Clear Lake's three public swim beaches by utilizing beach cleaner machines to remove goose waste, installing goose deterrents at the swim beaches, and continuing a septic system update grant program. These practices began to be implemented in 2011 and recent bacteria samples in 2012 are showing they can be effective if the effort is continued.
Resumo:
A targeted approach is being used in the Iowa Great Lakes Watershed with a keystone project featured within this project application in the heavily urbanized Center Lake Watershed. As identified in the Iowa Great Lakes Watershed Management Plan, urban runoff is the only remaining watershed concern in the Center Lake Watershed as the map in the attachments clearly shows. Fully one third of the watershed concerns of Center Lake will be treated through the installation of 7 keystone urban practices and will remove 63 pounds of phosphorous from entering the lake annually. Due to the interconnectedness of the Iowa Great Lakes (IGL), the watershed has been broken down into sub units called Resource Management Areas (RMA's) for priority practice implementation. This project will mesh with the existing Iowa Great Lakes Watershed Management Plan by reducing pollutant loads from the highest priority RMA's which are resulting in impaired water bodies. The majority of the funding needed for the specific practices specified in this proposal has already been secured through the Iowa DNR Section 319 and Lake Restoration Programs, The Water Quality Commission and the City of Spirit Lake. This funding request will simply bring the overall cost of these keystone practices into the range of affordability for the committed funders and the City of Spirit Lake
Resumo:
Twelve Mile Creek Lake is a 660 acre, Significant Publicly Owned Lake with a watershed of 14,820 acres for a ratio of 21:3. The watershed is predominately privately owned agricultural land that originates in Adair County and drains into the lake which serves as the primary source water for the City of Creston, Union County and the seven counties served by the Southern Iowa Rural Water Association. In recent years, frequent algae blooms and recurrent spikes in suspended solid concentrations have been inflating water treatment expenses for the Creston Municipal Utilities (CMU). Declining trends in water quality spurred CMU to enlist the Union Soil and Water Conservation District (SWCD) to assist in evaluating watershed conditions for potential upland improvements. Significant gully erosion issues that had been previously underestimated were discovered during this watershed assessment process. Newly acquired LiDAR elevation data readily revealed this concern which was previously obscured from view by the dense tree canopy. A Watershed Development and Planning Assistance Grant Application was approved and funded by the Iowa Department of Ag and Land Stewardship- Division of Soil Conservation. Throughout the planning process, project partners innovatively evaluated and prioritized a number of resource concerns throughout the watershed. The implementation plan presented will thwart these threats which left unaided will continue to diminish the overall health of the system, reduce the appeal of the lake to recreational users, and contribute to higher water treatment costs.
Resumo:
Species richness and geographical phenotypic variation in East African lacustrine cichlids are often correlated with ecological specializations and limited dispersal. This study compares mitochondrial and microsatellite genetic diversity and structure among three sympatric rock-dwelling cichlids of Lake Tanganyika, Eretmodus cyanostictus, Tropheus moorii, and Ophthalmotilapia ventralis. The species represent three endemic, phylogenetically distinct tribes (Eretmodini, Tropheini, and Ectodini), and display divergent ecomorphological and behavioral specialization. Sample locations span both continuous, rocky shoreline and a potential dispersal barrier in the form of a muddy bay. High genetic diversity and population differentiation were detected in T. moorii and E. cyanostictus, whereas much lower variation and structure were found in O. ventralis. In particular, while a 7-km-wide muddy bay curtails dispersal in all three species to a similar extent, gene flow along mostly continuous habitat appeared to be controlled by distance in E. cyanostictus, further restricted by site philopatry and/or minor habitat discontinuities in T. moorii, and unrestrained in O. ventralis. In contrast to the general pattern of high gene flow along continuous shorelines in rock-dwelling cichlids of Lake Malawi, our study identifies differences in population structure among stenotopic Lake Tanganyika species. The amount of genetic differentiation among populations was not related to the degree of geographical variation of body color, especially since more phenotypic variation is observed in O. ventralis than in the genetically highly structured E. cyanostictus.
Resumo:
Agreed-upon procedures report on the City of Wall Lake, Iowa for the period July 1, 2014 through June 30, 2015
Resumo:
To understand dissolved organic carbon (DOC) seasonal dynamics in a coastal oligotrophic site in the north-western Mediterranean Sea, we monitored DOC concentrations monthly over 3 yr, together with the meteorological data and the food-web-related biological processes involved in DOC dynamics. Additional DOC samples were taken in several inshore−offshore transects along the Catalan coast. We found DOC concentrations of ~60 µmol C l−1 in winter, with increasing values through the summer and autumn and reaching 100 to 120 µmol C l−1 in November. There was high inter-annual variability in this summer DOC accumulation, with values of 36, 69 and 13 µmol C l−1 for 2006, 2007 and 2008, respectively. The analysis of the microbial food-web processes involved in the DOC balance did not reveal the causes of this accumulation, since the only occasion on which we observed net DOC production (0.3 ± 1 µmol C l−1 d−1 on average) was in 2007, and the negative DOC balance of 2006 and 2008 did not prevent DOC accumulating. The DOC accumulation episodes coincided with low rates of water renewal (average 0.037 ± 0.021 d−1 from May to October) compared with those of winter to early spring (average 0.11 ± 0.048 d−1 from November to April). Indeed, the amount of DOC accumulated each year was inversely correlated with the average summer rainfall. We hypothesize that decreased DOC turn-over due to photochemical or biological processes mostly active during the summer and low water renewal rate combine to determine seasonal DOC accumulation and influence its inter-annual variability.
Resumo:
Summary of lake water quality data collected in 2014 as part of the Iowa DNR's lake monitoring program.
Resumo:
Summary of lake water quality data collected from 2000 through 2014 for lakes statewide monitored as part of the Iowa DNR's lake monitoring program.
Resumo:
The deposition of Late Pleistocene and Holocene sediments in the high-altitude lake Meidsee (located at an altitude of 2661 m a.s.l. in the Southwestern Alps) strikingly coincided with global ice-sheet and mountain-glacier decay in the Alpine forelands and the formation of perialpine lakes. Radiocarbon ages of bottom-core sediments point out (pre-) Holocene ice retreat below 2700 m a.s.l., at about 16, 13, 10, and 9 cal. kyr BP. The Meidsee sedimentary record therefore provides information about the high-altitude Alpine landscape evolution since the Late Pleistocene/Holocene deglaciation in the Swiss Southwestern Alps. Prior to 5 cal. kyr BP, the C/N ratio and the isotopic composition of sedimentary organic matter (delta N-15(org), delta C-13(org)) indicate the deposition of algal-derived organic matter with limited input of terrestrial organic matter. The early Holocene and the Holocene climatic optimum (between 7.0 and 5.5 cal. kyr BP) were characterized by low erosion (decreasing magnetic susceptibility, chi) and high content of organic matter (C-org > 13 wt.%), enriched in C-13(org) (>-18 parts per thousand) with a low C/N (similar to 10) ratio, typical of modern algal matter derived from in situ production. During the late Holocene, there was a long-term increasing contribution of terrestrial organic matter into the lake (C/N > 11), with maxima between 2.4 and 0.9 cal. kyr BP. A major environmental change took place 800 years ago, with an abrupt decrease in the relative contribution of terrestrial organic material into the lake compared with aquatic organic material which subsequently largely dominated (C/N drop from 16 to 10). Nonetheless, this event was marked by a rise in soil erosion (chi), in nutrients input (N and P contents) and in anthropogenic lead deposition, suggesting a human disturbance of Alpine ecosystems 800 years ago. Indeed, this time period coincided with the migration of the Walser Alemannic people in the region, who settled at relatively high altitude in the Southwestern Alps for farming and maintaining Alpine passes.
Resumo:
This study presents an evaluation of the stable isotopic composition of water (hydrogen and oxygen) and dissolved inorganic carbon (DIC) of Lake Geneva, a deep, peri-alpine lake situated at the border between Switzerland and France. The research goal is to apply vertical and seasonal variations of the isotope compositions to evaluate mixing processes of pollutants, nutrients and oxygen. Depth profiles were sampled at different locations throughout Lake Geneva on a monthly and seasonal basis over the course of three years (2009-2011). The results of the oxygen isotopic composition indicate a Rhône River interflow, which can be traced for about 55 km throughout the lake during summer. The Rhône River interflow is 7 to 15 m thick and the molar fraction of Rhône water is estimated to amount up to 37 %. Calculated density of the water and measured isotopic compositions demonstrate that the interflow depth changes in conjunction with the density gradient in the water column during fall. Partial pressure of CO2 indicates that the epilimnion is taking up CO2 from the atmosphere between spring and fall. The epilimnion is most enriched in 13CDIC in September and a progressive depletion of 13CDIC can be observed in the metalimnion from spring to late fall. This stratification is dependent on the local density stratification and the results demonstrate that parameters, which are indicating photosynthesis, are not necessarily linked to δ13CDIC values. In addition, the amount of primary production shows a strong discrepancy between summer 2009 and 2010, but δ13CDIC values of the epilimnion and metalimnion do not indicate variations. In the hypolimnion of the deep lake δ13CDIC values are constant and the progressive depletion allows tracing remineralization processes. The combination of stable carbon and oxygen isotopic compositions allows furthermore tracing Rhône River water fractions, as well as wastewater, stormwater and anthropogenic induced carbon in the water column of the shallow Bay of Vidy. In combination with the results of measured micropollutants, the study underlines that concentrations of certain substances may be related to the Rhône River interflow and/or remineralization of particulate organic carbon. Water quality monitoring and research should therefore be extended to the metalimnion as well as sediment water interface.
Resumo:
The main physical long-scale processes occurring in Lake Banyoles are reviewed as a tribute to Prof. Margalef. These processesinclude the water fluxes below the surface of the lake, the behavior of the sediment in suspension in the basins, the heat fluxesat the surface and at the bottom layers, the internal seiching, the formation of a baroclinic current due to differences in coolingbetween the two lobes, the mixing dynamics, the meromictic behavior of some of the basins and the formation and dynamics of hydrothermal plumes
Resumo:
In lentic water bodies, such as lakes, the water temperature near the surface typically increases during the day, and decreases during the night as a consequence of the diurnal radiative forcing (solar and infrared radiation). These temperature variations penetrate vertically into the water, transported mainly by heat conduction enhanced by eddy diffusion, which may vary due to atmospheric conditions, surface wave breaking, and internal dynamics of the water body. These two processes can be described in terms of an effective thermal diffusivity, which can be experimentally estimated. However, the transparency of the water (depending on turbidity) also allows solar radiation to penetrate below the surface into the water body, where it is locally absorbed (either by the water or by the deployed sensors). This process makes the estimation of effective thermal diffusivity from experimental water temperature profiles more difficult. In this study, we analyze water temperature profiles in a lake with the aim of showing that assessment of the role played by radiative forcing is necessary to estimate the effective thermal diffusivity. To this end we investigate diurnal water temperature fluctuations with depth. We try to quantify the effect of locally absorbed radiation and assess the impact of atmospheric conditions (wind speed, net radiation) on the estimation of the thermal diffusivity. The whole analysis is based on the results of fiber optic distributed temperature sensing, which allows unprecedented high spatial resolution measurements (∼4 mm) of the temperature profile in the water and near the water surface.