953 resultados para nucleon-nucleon collision
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we compute the one-nucleon-induced nonmesonic hypernuclear decay rates of He-5(Lambda), C-12(Lambda) and C-13(Lambda) using a formalism based on the independent particle shell model in terms of laboratory coordinates. To ascertain the correctness and precision of the method, these results are compared with those obtained using a formalism in terms of center-of-mass coordinates, which has been previously reported in the literature. The formalism in terms of laboratory coordinates will be useful in the shell-model approach to two-nucleon-induced transitions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A collective Hamiltonian for a two alpha particles aggregate, which describes the 8Be nucleus, encompassing a collective potential and an inertia function of that system, is obtained and analyzed through the use of a technique - derived from an approach of the generator coordinate method (GCM) - which allows for the extraction of collective information. The nucleon-nucleon interaction considered here is the one proposed by Volkov plus the Coulomb repulsion. It is shown that nonlocal effects appear in those collective functions describing the spontaneously occurring breakup process. Furthermore, the result for the inertia function stands for a microscopically generated evidence supporting a double-folding-based model of the real part of the nucleus-nucleus nonlocal interaction recently proposed.
Resumo:
The nuclear dependence of the neutron-proton mass difference is examined in a relativistic harmonic quark model with the assumption of a swelling of the individual nucleon originated by a decrease of the spring constant inside the nuclear medium. A decrease of the neutron-proton mass difference is obtained which is reasonably small and in the right direction to cope with the Nollen-Schiffer anomaly in mirror nuclei. © 1992 Società Italiana di Fisica.
Resumo:
We calculate within the framework of relativistic nuclear models the contribution of the ρ0 - ω mixing interaction to the binding energy differences of the mirror nuclei in the neighborhood of A = 16 and A = 40. We use two relativistic models for the nuclear structure, one with scalar and vector Woods-Saxon potentials, and the Walecka model. The ρ0 - ω interaction is treated in first order perturbation theory. When using the Walecka model the ρ- and ω-nucleon coupling constants are the same for calculating bound state wave functions and the perturbation due to the mixing. We find that the relativistic results on the average are of the same order as the ones obtained with nonrelativistic calculations.
Resumo:
Recent deep inelastic data leads to an up-down quark asymmetry of the nucleon sea. Explanations of the flavour asymmetry and the di-lepton production in proton-nucleus collisions call for a temperature T ≈ 100 MeV in a statistical model. This T may be conjectured as being due to the Fulling-Davies-Unruh effect. But it is not possible to fit the structure function itself.