921 resultados para nonlinear oscillations
Resumo:
A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS), is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.
Resumo:
At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.
Resumo:
In this thesis mainly long quasi-periodic solar oscillations in various solar atmospheric structures are discussed, based on data obtained at several wavelengths, focussing, however, mainly on radio frequencies. Sunspot (Articles II and III) and quiet Sun area (QSA) (Article I) oscillations are investigated along with quasi-periodic pulsations (QPP) in a flaring event with wide-range radio spectra (Article IV). Various oscillation periods are detected; 3–15, 35–70 and 90 minutes (QSA), 10-60 and 80-130 minutes (in sunspots at various radio frequencies), 3-5, 10-23, 220-240, 340 and 470 minutes (in sunspots at photosphere) and 8-12 and 15-17 seconds (in a solar flare at radio frequencies). Some of the oscillation periods are detected for the first time, while some of them have been confirmed earlier by other research groups. Solar oscillations can provide more information on the nature of various solar structures. This thesis presents the physical mechanisms of some solar structure oscillations. Two different theoretical approaches are chosen; magnetohydrodynamics (MHD) and the shallow sunspot model. These two theories can explain a wide range of solar oscillations from a few seconds up to some hours. Various wave modes in loop structures cause solar oscillations (<45 minutes) both in sunspots and quiet Sun areas. Periods lasting more than 45 minutes in the sunspots (and a fraction of the shorter periods) are related to sunspot oscillations as a whole. Sometimes similar oscillation periods are detected both in sunspot area variations and respectively in magnetic field strength changes. This result supports a concept that these oscillations are related to sunspot oscillations as a whole. In addition, a theory behind QPPs at radio frequencies in solar flares is presented. The thesis also covers solar instrumentation and data sources. Additionally, the data processing methods are presented. As the majority of the investigations in this thesis focus on radio frequencies, also the most typical radio emission mechanisms are presented. The main structures of the Sun, which are related to solar oscillations, are also presented. Two separate projects are included in this thesis. Solar cyclicity is studied using the extensively large solar radio map archieve from Metsähovi Radio Observatory (MRO) at 37 GHz, between 1978 and 2011 (Article V) covering two full solar cycles. Also, some new solar instrumentation (Article VI) was developed during this thesis.
Resumo:
This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.
Resumo:
The nonlinear interaction between Görtler vortices (GV) and three-dimensional Tollmien-Schlichting (TS) waves nonlinear interaction is studied with a spatial, nonparallel model based on the Parabolized Stability Equations (PSE). In this investigation the effect of TS wave frequency on the nonlinear interaction is studied. As verified in previous investigations using the same numerical model, the relative amplitudes and growth rates are the dominant parameters in GV/TS wave interaction. In this sense, the wave frequency influence is important in defining the streamwise distance traveled by the disturbances in the unstable region of the stability diagram and in defining the amplification rates that they go through.
Resumo:
A three dimensional nonlinear viscoelastic constitutive model for the solid propellant is developed. In their earlier work, the authors have developed an isotropic constitutive model and verified it for one dimensional case. In the present work, the validity of the model is extended to three-dimensional cases. Large deformation, dewetting and cyclic loading effects are treated as the main sources of nonlinear behavior of the solid propellant. Viscoelastic dewetting criteria is used and the softening of the solid propellant due to dewetting is treated by the modulus decrease. The nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The constitutive equation is implemented into a finite element code for the analysis of propellant grains. A commercial finite element package ABAQUS is used for the analysis and the model is introduced into the code through a user subroutine. The model is evaluated with different loading conditions and the predicted values are in good agreement with the measured ones. The resulting model applied to analyze a solid propellant grain for the thermal cycling load.
Resumo:
The dynamics of flexible systems, such as robot manipulators , mechanical chains or multibody systems in general, is becoming increasingly important in engineering. This article deals with some nonlinearities that arise in the study of dynamics and control of multibody systems in connection to large rotations. Specifically, a numerical scheme that adresses the conservation of fundamental constants is presented in order to analyse the control-structure interaction problems.
Resumo:
A frequency-domain method for nonlinear analysis of structural systems with viscous, hysteretic, nonproportional and frequency-dependent damping is presented. The nonlinear effects and nonproportional damping are considered through pseudo-force terms. The modal coordinates uncoupled equations are iteratively solved. The treatment of initial conditions in the frequency domain which is necessary for the treatment of the uncoupled equations is initially adressed.
Resumo:
One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.
Resumo:
The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.
Resumo:
Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it is described by a noninteger dimension. This contribution presents an overview of the main definitions of dimension discussing their evaluation from time series employing the correlation and the generalized dimension. The investigation is applied to the nonlinear pendulum where signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the time series. State space reconstruction and the determination of attractor dimensions are carried out regarding periodic and chaotic signals. Results obtained from time series analyses are compared with a reference value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure allows one to identify the best techniques to be applied in the analysis of experimental data.
Resumo:
In this work it is presented a systematic procedure for constructing the solution of a large class of nonlinear conduction heat transfer problems through the minimization of quadratic functionals like the ones usually employed for linear descriptions. The proposed procedure gives rise to an efficient and easy way for carrying out numerical simulations of nonlinear heat transfer problems by means of finite elements. To illustrate the procedure a particular problem is simulated by means of a finite element approximation.
Resumo:
In this work we consider the transient stability of coupled motions of a 2 D.O.F. nonlinear oscillator that can represent, for example, the motions of a sea vessel under the action of trains of regular lateral waves. Instability is studied as the escape of the system from a safe potential well. The set of initial conditions in phase space that lead to acceptable motions constitutes its safe basin. We investigate the evolution of these safe basins under variation of parameters such as frequency and amplitude of waves, and an internal tuning parameter. Complex nonlinear phenomena are known to play an important role in determining the loss of safe basins as, say, wave amplitude is increased. We therefore investigate those processes, and attempt to classify them in terms of their speed relative to changes in parameter values. "Mechanism basins" are produced depicting regions of parameter space in which rapid or slow losses of safe basin are observed. We propose that a comprehensive understanding of mechanisms of loss of safe basins can be a valuable tool in assessing stability properties of these systems, and we give a conceptual view of how such information could be used.
Resumo:
This paper applies the Multi-Harmonic Nonlinear Receptance Coupling Approach (MUHANORCA) (Ferreira 1998) to evaluate the frequency response characteristics of a beam which is clamped at one end and supported at the other end by a nonlinear cubic stiffness joint. In order to apply the substructure coupling technique, the problem was characterised by coupling a clamped linear beam with a nonlinear cubic stiffness joint. The experimental results were obtained by a sinusoidal excitation with a special force control algorithm where the level of the fundamental force is kept constant and the level of the harmonics is kept zero for all the frequencies measured.
Resumo:
In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.