948 resultados para non-reproducibility of the cross sections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dominant process in hard proton-proton collisions is the production of hadronic jets.rnThese sprays of particles are produced by colored partons, which are struck out of their confinement within the proton.rnPrevious measurements of inclusive jet cross sections have provided valuable information for the determination of parton density functions and allow for stringent tests of perturbative QCD at the highest accessible energies.rnrnThis thesis will present a measurement of inclusive jet cross sections in proton-proton collisions using the ATLAS detector at the LHC at a center-of-mass energy of 7 TeV.rnJets are identified using the anti-kt algorithm and jet radii of R=0.6 and R=0.4.rnThey are calibrated using a dedicated pT and eta dependent jet calibration scheme.rnThe cross sections are measured for 40 GeV < pT <= 1 TeV and |y| < 2.8 in four bins of absolute rapidity, using data recorded in 2010 corresponding to an integrated luminosity of 3 pb^-1.rnThe data is fully corrected for detector effects and compared to theoretical predictions calculated at next-to-leading order including non-perturbative effects.rnThe theoretical predictions are found to agree with data within the experimental and theoretic uncertainties.rnrnThe ratio of cross sections for R=0.4 and R=0.6 is measured, exploiting the significant correlations of the systematic uncertainties, and is compared to recently developed theoretical predictions.rnThe underlying event can be characterized by the amount of transverse momentum per unit rapidity and azimuth, called rhoue.rnUsing analytical approaches to the calculation of non-perturbative corrections to jets, rhoue at the LHC is estimated using the ratio measurement.rnA feasibility study of a combined measurement of rhoue and the average strong coupling in the non-perturbative regime alpha_0 is presented and proposals for future jet measurements at the LHC are made.