948 resultados para neutron - rich nucleus high - spin states
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Based on the accretion-induced magnetic field decay model, in which a frozen field and an incompressible fluid are assumed, we obtain the following results: (1) an analytic relation between the magnetic field and spin period, if the fastness parameter of the accretion disk is neglected (The evolutionary tracks of accreting neutron stars in the P-B diagram in our model are different from the equilibrium period lines when the influence of the fastness parameter is taken into account.); (2) the theoretical minimum spin period of an accreting neutron star is max(1.1ms (DeltaM/M(circle dot))(-1)R(6)(-5/14) I(45)(M/M(circle dot))(-1/2),1.1ms (M/M(circle dot))(-1/2) R(6)(17/14)), independent of the accretion rate (X-ray luminosity) but dependent on the total accretion mass, DeltaM; however, the minimum magnetic field depends on the accretion rate; (3) the magnetic field strength decreases faster with time than does the period.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A 30-basepair (bp) deletion in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) gene has been reported in nasopharyngeal carcinoma and EBV-associated malignant lymphomas. Prior studies have found the deletion in about 10% to 28% of cases of Hodgkin's disease (HD), particularly in cases with aggressive histology. We studied the prevalence of 30-bp LMP1 gene deletion in EBV-positive HD in the United States (US) (12 cases) and Brazil (26 cases) with comparison to reactive lymphoid tissues (21 cases) and HD without EBV-positive Reed-Sternberg cells (15 cases). We studied the status of the LMP1 gene by Southern blot hybridization of polymerase chain reaction (PCR) products obtained after amplification with primers spanning the site of the deletion. We also performed EBV typing, EBER1 in situ hybridization, and LMP1 protein immunohistochemistry. EBV was detected in 12/26 (46%) cases of HD from the US and 26/27 (96%) cases of Brazilian HD. The 30-bp LMP1 gene deletion was observed in 4/12 (33%) cases of EBV-positive HD from US, and 12/26 (46%) cases of Brazilian EBV-positive HD, including 3 cases of type B EBV, as compared with 12/21 (57%) reactive lymphoid tissues and 9/15 (60%) cases of EBV-negative HD. US and Brazilian HD showed a higher prevalence of the 30-bp LMP1 gene deletion, compared with studies of others. The unexpected finding of high incidence of 30-bp deletion in LMP1 gene in reactive lymphoid tissue and HD without EBV-positive Reed-Sternberg cells suggests that this deletion may not be relevant to HD pathogenesis in most cases. Copyright (C) 1997 by W.B. Saunders Company.
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
We report experiments of electron spin resonance (ESR) of Cu2+ in polycrystalline samples of CaCu3Ti4O12 post-annealed in different atmospheres. After being synthesized by solid state reaction, pellets of CaCu3Ti4O12 were annealed for 24 h at 1000 degrees C under air, Ar or O-2. Our temperature dependent ESR data revealed for all samples nearly temperature independent g value (2.15(1)) and linewidth for T > T-N approximate to 25 K. However, the values of ESR linewidth are strongly affected by the oxygen content in the sample. For instance, argon post-annealed samples show a much larger linewidth than the O-2 or air post-annealed samples. We attribute this broadening to an increase of the dipolar homogeneous broadening of the Cu2+ ESR lines due to the presence of oxygen vacancies which induce an S=1/2 spin inside the TiO6 octahedra. Correlation between a systematic dependence of the ESR linewidth on the oxygen content and the high dielectric constant of these materials is addressed. Also, ESR, magnetic susceptibility, and specific heat data for a single crystal of CaCu3Ti4O12 and for polycrystals of CdCu3Ti4O12 are reported.
Resumo:
Some synthetic metals show in addition to good conductivity, high microwave dielectric constants. In this work, it is shown how conduction-electron spin resonance(CESR) lineshape can be affected by these high constants. The conditions for avoiding these effects in the CESR measurements are discussed as well as a method for extracting microwave dielectric constants from CESR lines. (C) 1995 Academic Press, Inc.
Resumo:
Inelasticity distributions in high-energy p-nucleus collisions are computed in the framework of the interacting gluon model, with the impact-parameter fluctuation included. A proper account of the peripheral events by this fluctuation has shown to be vital for the overall agreement with several reported data. The energy dependence is found to be weak.
Resumo:
A forward dispersion calculation is implemented for the spin polarizabilities γ1, ⋯, γ4 of the proton and the neutron. These polarizabilities are related to the spin structure of the nucleon at low energies and are structure-constants of the Compton scattering amplitude at script O sign(ω3). In the absence of a direct experimental measurement of these quantities, a dispersion calculation serves the purpose of constraining the model building, and of comparing with recent calculations in heavy baryon chiral perturbation theory. © 1998 Elsevier Science B.V.
Resumo:
Using the manifestly spacetime-supersymmetric version of open superstring field theory, we construct the free action for the first massive states of the open superstring compactified to four dimensions. This action is in N = 1 D = 4 superspace and describes a massive spin-2 multiplet coupled to two massive scalar multiplets. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The in-medium influence on π0 photoproduction from spin zero nuclei is carefully studied in the GeV range using a straightforward Monte Carlo analysis. The calculation takes into account the relativistic nuclear recoil for coherent mechanisms (electromagnetic and nuclear amplitudes) plus a time dependent multi-collisional intranuclear cascade approach (MCMC) to describe the transport properties of mesons produced in the surroundings of the nucleon. A detailed analysis of the meson energy spectra for the photoproduction on 12C at 5.5 GeV indicates that both the Coulomb and nuclear coherent events are associated with a small energy transfer to the nucleus (≲ 5 MeV), while the contribution of the nuclear incoherent mechanism is vanishing small within this kinematical range. The angular distributions are dominated by the Primakoff peak at extreme forward angles, with the nuclear incoherent process being the most important contribution above θπ0 ≲ 20. Such consistent Monte Carlo approach provides a suitable method to clean up nuclear backgrounds in some recent high precision experiments, such as the PrimEx experiment at the Jefferson Laboratory Facility.
Resumo:
We report a search for R-parity-violating production and decay of sneutrino particles in the eμ final state with 1.04±0.06fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider in 2002-2006. Good agreement between the data and the standard model prediction is observed. With no evidence for new physics, we set limits on the R-parity-violating couplings λ311′ and λ312 as a function of the sneutrino mass. © 2008 The American Physical Society.
Resumo:
In this work, we investigate theoretically the spin-resolved local density of states (SR-LDOS) of a ferromagnetic (FM) island hybridized with an adatom, which is described by the Single Impurity Anderson Model (SIAM). Our results are comparable with Scanning Tunneling Microscope (STM) experimental data. © 2012 Springer Science+Business Media, LLC.