965 resultados para neuronal cells
Resumo:
Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.
Resumo:
MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.
Resumo:
Primary sensory neurons were grown under four conditions of culture. The influence of nonneuronal cells, horse serum or both was studied on the phenotypic expression of certain neuronal subpopulations. The number of neurons expressing acetylcholinesterase, alpha-bungarotoxin-binding sites or a high uptake capacity for glutamine was enhanced by nonneuronal cells. The horse serum increases the neuronal subpopulation exhibiting a carbonic anhydrase activity. Certain phenotypic changes fit conditions consistent with an epigenetic induction rather than a cell selection.
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Resumo:
The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.
Resumo:
The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.
Resumo:
PURPOSE We have previously shown that retinal stem cells (RSCs) can be isolated from the radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have a great capacity to renew and to generate a large number of neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, recent published results from our lab revealed that such cells have a poor integration and survival rate after grafting. The uncontrolled environment of a retina seems to prevent good integration and survival after grafting in vivo. To bypass this problem, we are evaluating the possibility of generating in vitro a hemi-retinal tissue before transplantation. METHODS RSC were expanded and cells passaged <10 were seeded in a solution containing poly-ethylene-glycol (PEG) polymer based hydrogels crosslinked with peptides that are chosen to be substrates for matrix metalloproteinases. Various doses of cross linkers peptides allowing connections between PEG polymers were tested. Different growth factors were studied to stimulate cell proliferation and differentiation. RESULTS Cells survived only in the presence of EGF and FGF-2 and generated colonies with a sphere shape. No cells migrated within the gel. To improve the migration and the repartition of the cells in the gels, the integrin ligand RGDSP was added into the gel. In the presence of FGF-2 and EGF, newly formed cell clusters appeared by cell proliferation within several days, but again no outspreading of cells was observed. No difference was even seen when the stiffness of the hydrogels or the concentration of the integrin ligand RGDSP were changed. However, our preliminary results show that RSCs still form spheres when laminin is entrapped in the gel, but they started to spread out having a neuronal morphology after around 2 weeks. The neuronal population was assessed by the presence of the neuronal marker b-tubulin-III. This differentiation was achieved after successive steps of stimulations including FGF-2 and EGF, and then only FGF-2. Glial cells were also present. Further characterizations are under process. CONCLUSIONS RSC can be grown in 3D. Preliminary results show that neuronal cell phenotype acquisition can be instructed by exogenous stimulations and factors linked to the gel. Further developments are necessary to form a homogenous tissue containing retinal cells.
Resumo:
ABSTRACT Adult neuronal plasticity is a term that corresponds to a set of biological mechanisms allowing a neuronal circuit to respond and adapt to modifications of the received inputs. Mystacial whiskers of the mouse are the starting point of a major sensory pathway that provides the animal with information from its immediate environment. Through whisking, information is gathered that allows the animal to orientate itself and to recognize objects. This sensory system is crucial for nocturnal behaviour during which vision is not of much use. Sensory information of the whiskers are sent via brainstem and thalamus to the primary somatosensory area (S1) of the cerebral cortex in a strictly topological manner. Cell bodies in the layer N of S 1 are arranged in ring forming structures called barrels. As such, each barrel corresponds to the cortical representation in layer IV of a single whisker follicle. This histological feature allows to identify with uttermost precision the part of the cortex devoted to a given whisker and to study modifications induced by different experimental conditions. The condition used in the studies of my thesis is the passive stimulation of one whisker in the adult mouse for a period of 24 hours. It is performed by glueing a piece of metal on one whisker and placing the awake animal in a cage surrounded by an electromagnetic coil that generates magnetic field burst inducing whisker movement at a given frequency during 24 hours. I analysed the ultrastructure of the barrel corresponding the stimulated whisker using serial sections electron microscopy and computer-based three-dimensional reconstructions; analysis of neighbouring, unstimulated barrels as well as those from unstimulated mice served as control. The following elements were structurally analyzed: the spiny dendrites, the axons of excitatory as well as inhibitory cells, their connections via synapses and the astrocytic processes. The density of synapses and spines is upregulated in a barrel corresponding to a stimulated whisker. This upregulation is absent in the BDNF heterozygote mice, indicating that a certain level of activity-dependent released BDNF is required for synaptogenesis in the adult cerebral cortex. Synpaptogenesis is correlated with a modification of the astrocytes that place themselves in closer vicinity of the excitatory synapses on spines. Biochemical analysis revealed that the astrocytes upregulate the expression of transporters by which they internalise glutamate, the neurotransmitter responsible for the excitatory response of cortical neurons. In the final part of my thesis, I show that synaptogenesis in the stimulated barrel is due to the increase in the size of excitatory axonal boutons that become more frequently multisynaptic, whereas the inhibitory axons do not change their morphology but form more synapses with spines apposed to them. Taken together, my thesis demonstrates that all the cellular elements present in the neuronal tissue of the adult brain contribute to activity-dependent cortical plasticity and form part of a mechanism by which the animal responds to a modified sensory experience. Throughout life, the neuronal circuit keeps the faculty to adapt its function. These adaptations are partially transitory but some aspects remain and could be the structural basis of a memory trace in the cortical circuit. RESUME La plasticité neuronale chez l'adulte désigne un ensemble de mécanismes biologiques qui permettent aux circuits neuronaux de répondre et de s'adapter aux modifications des stimulations reçues. Les vibrisses des souris sont un système crucial fournissant des informations sensorielles au sujet de l'environnement de l'animal. L'information sensorielle collectée par les vibrisses est envoyée via le tronc cérébral et le thalamus à l'aire sensorielle primaire (S 1) du cortex cérébral en respectant strictement la somatotopie. Les corps cellulaires dans la couche IV de S 1 sont organisés en anneaux délimitant des structures nommées tonneaux. Chaque tonneau reçoit l'information d'une seule vibrisse et l'arrangement des tonneaux dans le cortex correspond à l'arrangement des vibrisses sur le museau de la souris. Cette particularité histologique permet de sélectionner avec certitude la partie du cortex dévolue à une vibrisse et de l'étudier dans diverses conditions. Le paradigme expérimental utilisé dans cette thèse est la stimulation passive d'une seule vibrisse durant 24 heures. Pour ce faire, un petit morceau de métal est collé sur une vibrisse et la souris est placée dans une cage entourée d'une bobine électromagnétique générant un champ qui fait vibrer le morceau de métal durant 24 heures. Nous analysons l'ultrastructure du cortex cérébral à l'aide de la microscopie électronique et des coupes sériées permettant la reconstruction tridimensionnelle à l'aide de logiciels informatiques. Nous observons les modifications des structures présentes : les dendrites épineuses, les axones des cellules excitatrices et inhibitrices, leurs connections par des synapses et les astrocytes. Le nombre de synapses et d'épines est augmenté dans un tonneau correspondant à une vibrisse stimulée 24 heures. Basé sur cela, nous montrons dans ces travaux que cette réponse n'est pas observée dans des souris hétérozygotes BDNF+/-. Cette neurotrophine sécrétée en fonction de l'activité neuronale est donc nécessaire pour la synaptogenèse. La synaptogenèse est accompagnée d'une modification des astrocytes qui se rapprochent des synapses excitatrices au niveau des épines dendritiques. Ils expriment également plus de transporteurs chargés d'internaliser le glutamate, le neurotransmetteur responsable de la réponse excitatrice des neurones. Nous montrons aussi que les axones excitateurs deviennent plus larges et forment plus de boutons multi-synaptiques à la suite de la stimulation tandis que les axones inhibiteurs ne changent pas de morphologie mais forment plus de synapses avec des épines apposées à leur membrane. Tous les éléments analysés dans le cerveau adulte ont maintenu la capacité de réagir aux modifications de l'activité neuronale et répondent aux modifications de l'activité permettant une constante adaptation à de nouveaux environnements durant la vie. Les circuits neuronaux gardent la capacité de créer de nouvelles synapses. Ces adaptations peuvent être des réponses transitoires aux stimuli mais peuvent aussi laisser une trace mnésique dans les circuits.
Resumo:
BACKGROUND: Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. METHODOLOGY/FINDINGS: Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. CONCLUSIONS/SIGNIFICANCE: This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.
Resumo:
Neurofilamentous changes in select groups of neurons are associated with the degenerative changes of many human age-related neurodegenerative diseases. To examine the possible effects of aging on the neuronal cytoskeleton containing human proteins, the retinas of transgenic mice expressing the gene for the human middle-sized neurofilament triplet were investigated at 3 or 12 months of age. Transgenic mice developed tangle-like neurofilamentous accumulations in a subset of retinal ganglion cells at 12 months of age. These neurofilamentous accumulations, which also involved endogenous neurofilament proteins, were present in the perikarya and proximal processes of large ganglion cells and were predominantly located in peripheral retina. The presence of the human protein may thus confer vulnerability of the cytoskeleton to age-related alterations in this specific retinal cell type and may serve as a model for similar cellular changes associated with Alzheimer's disease and glaucoma.
Resumo:
New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules.
Resumo:
It has been reported that phosphoinositide 3-kinase (PI 3-kinase) and its downstream target, protein kinase B (PKB), play a central role in the signaling of cell survival triggered by neurotrophins (NTs). In this report, we have analyzed the involvement of Ca2+ and calmodulin (CaM) in the activation of the PKB induced by NTs. We have found that reduction of intracellular Ca2+ concentration or functional blockade of CaM abolished NGF-induced activation of PKB in PC12 cells. Similar results were obtained in cultures of chicken spinal cord motoneurons treated with brain-derived neurotrophic factor (BDNF). Moreover, CaM inhibition prevented the cell survival triggered by NGF or BDNF. This effect was counteracted by the transient expression of constitutive active forms of the PKB, indicating that CaM regulates NT-induced cell survival through the activation of the PKB. We have investigated the mechanisms whereby CaM regulates the activation of the PKB, and we have found that CaM was necessary for the proper generation and/or accumulation of the products of the PI 3-kinase in intact cells.
Resumo:
Santiago Ramón y Cajal developed a great body of scientific research during the last decade of 19th century, mainly between 1888 and 1892, when he published more than 30 manuscripts. The neuronal theory, the structure of dendrites and spines, and fine microscopic descriptions of numerous neural circuits are among these studies. In addition, numerous cell types (neuronal and glial) were described by Ramón y Cajal during this time using this 'reazione nera' or Golgi method. Among these neurons were the special cells of the molecular layer of the neocortex. These cells were also termed Cajal cells or Retzius cells by other colleagues. Today these cells are known as Cajal-Retzius cells. From the earliest description, several biological aspects of these fascinating cells have been analyzed (e.g., cell morphology, physiological properties, origin and cellular fate, putative function during cortical development, etc). In this review we will summarize in a temporal basis the emerging knowledge concerning this cell population with specific attention the pioneer studies of Santiago Ramón y Cajal.
Resumo:
We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-β and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia.