508 resultados para nanoscience
Resumo:
A new betadiketonate ligand displaying a trimethoxysilyl group as grafting function and a diketone moiety as complexing site (TTA-Si = 4,4,4-trifluoro-2-(3-trimethoxysilyl)propyl)-1-3-butanedione (C4H3S)COCH[(CH2)(3)Si(OCH3)(3)]COCF3) and its highly luminescent europium(III) complex [Eu(TTA-Si)(3)] have been synthesized and fully characterized. Luminescent silica-based hybrids have been prepared as well with this new complex grafted on the surface of dense silica nanoparticles (28 +/- 3 nm) or on mesoporous silica particles. The covalent bonding of Eu(TTA-Si)(3) inside the core of uniform silica nanoparticles (40 +/- 5 nm) was also achieved. Luminescence properties are discussed in relation to the europium chemical environment involved in each of the three hybrids. The general methodology proposed allowed high grafting ratios and overcame chelate release and tendency to agglomeration, and it could be applied to any silica matrix (in the core or at the surface, nanosized or not, dense or mesoporous) and therefore numerous applications such as luminescent markers and luminophors could be foreseen.
Resumo:
The application of one-dimensional (1D) V2O5 center dot nH(2)O nanostructures as pH sensing material was evaluated. 1D V2O5 center dot nH(2)O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5 center dot nH(2)O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5 center dot nH(2)O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5 center dot nH(2)O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.
Resumo:
The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.
Resumo:
Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franz's cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 +/- 10 nm and 188 +/- 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.
Resumo:
Poly(vinyl butyral)-polyaniline-sodium montmorillonite nanocomposites were prepared via polymerization of aniline between clay mineral platelets at two different pH levels (2.0 and 5.0), followed by dispersion of the polyaniline-sodium montmorillonite nanocomposite in a poly(vinyl butyral) solution. A comparison was made of the effect of the pH levels and the polyaniline-sodium montmorillonite nanocomposite precursor on the final structures of the poly(vinyl butyral) nanocomposites and their electrical conductivities. X-ray diffraction patterns revealed the formation of nanocomposites at both pH levels. UV-Vis spectra indicated that the polyaniline formed at both pH levels was conductive, with the UV-Vis spectra presenting a band at 420 nm corresponding to the polaronic form and the beginning of a new band at 600 nm indicating the presence of polaronic segments. FTIR spectra revealed the peaks of the groups present in polyaniline and poly(vinyl butyral) nanocomposites. The electrical conductivities of the polyaniline and poly(vinyl butyral) nanocomposites prepared at pH 2.0 were lower than those of the same nanocomposites prepared at pH 5.0, probably due to the lower formation of polyaniline chains in a more acidic dispersion and to the final configuration of polyaniline in the nanocomposites.
Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application
Resumo:
Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd2Fe14BHx during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H-max similar to 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K <= Delta T-max <= 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as similar to 2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 mu g ml(-1)) due to the coating applied during milling.
Resumo:
We report on the strong temperature-dependent thermal expansion, alpha(D), in CdS quantum dots (QDs) embedded in a glass template. We have performed a systematic study by using the temperature-dependent first-order Raman spectra, in CdS bulk and in dot samples, in order to assess the size dependence of alpha(D), and where the role of the compressive strain provoked by the glass host matrix on the dot response is discussed. We report the Gruneisen mode parameters and the anharmonic coupling constants for small CdS dots with mean radius R similar to 2.0 nm. We found that gamma parameters change, with respect to the bulk CdS, in a range between 20 and 50%, while the anharmonicity contribution from two-phonon decay channel becomes the most important process to the temperature-shift properties.
Resumo:
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 A degrees C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions H-4(11/2) -> aEuro parts per thousand I-4(13/2) (805 nm) and S-4(3/2) -> aEuro parts per thousand I-4(13/2) (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels H-4(11/2) and S-4(3/2) confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.
Resumo:
Optical memories with long-term stability at high temperatures have long been pursued in azopolymers with photoinduced birefringence. In this study, we show that the residual birefringence in layer-by-layer (LbL) films made with poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) alternated with poly(allylamine hydrochloride) (PAH) can be tuned by varying the extent of electrostatic interactions with film fabrication at different pHs for PAH. The dynamics of both writing and relaxation processes could be explained with a two-stage mechanism involving the orientation of the chromophores per se and the chain movement. Upon calculating the activation energies for these processes, we demonstrate semiquantitatively that reduced electrostatic interactions in films prepared at higher pH, for which PAH is less charged, are responsible for the longer stability at high temperatures. This is attributed to orientation of PAZO chromophores via cooperative aggregation, where the presence of counterions hindered relaxation.
Resumo:
The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.
Resumo:
Polymeric nanoparticles (PLGA) have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacementmethod. Physicochemical properties were measured by light scattering, scanning electron microscopy and zeta-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d approximate to 400 nm) polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE approximate to 79%) and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.
Resumo:
This paper describes the effect of using different titanium precursors on the synthesis and physical properties of SrTiO3 powders obtained by microwave-assisted hydrothermal method. X-ray diffraction measurements, X-ray absorption near-edge structure (XANES) spectroscopy, field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HRTEM) were carried out to investigate the structural and optical properties of the SrTiO3 spherical and cubelike-shaped particles. The appropriate choice of the titanium precursor allowed the control of morphological and photoluminescence (PL) properties of SrTiO3 compound. The PL emission was more intense in SrTiO3 samples composed of spherelike particles. This behavior was attributed to the existence of a lower amount of defects due to the uniformity of the spherical particles.
Resumo:
Using a first-principles theoretical model the adsorption of a methyl radical on different sized silver nanoparticles is compared to the adsorption of the same radical on model surfaces. Calculations of our structural, dynamical and electronic properties indicated that small changes in the local environment will lead to small changes in infrared (IR) wavenumbers, but in dramatic changes in the IR signal. Our calculations indicate the lower the adsorption site coordination, the higher is the signal strength, suggesting that small changes in the electronic charge distribution will result in bigger changes in the polarizability and hence in the spectroscopic signal intensity. This effect explains, among others, the signal magnification observed for nanoparticles in surface enhanced Raman spectroscopic (SERS) experiments.
Resumo:
We performed an ab initio investigation on the properties of rutile tin oxide (SnOx) nanowires. We computed the wire properties determining the equilibrium geometries, binding energies, and electronic band structures for several wire dimensions and surface facet configurations. The results allowed us to establish scaling laws for the structural properties, in terms of the nanowire perimeters. The results also showed that the surface states control most of the electronic properties of the nanowires. Oxygen incorporation in the nanowire surfaces passivated the surface-related electronic states, and the resulting quantum properties and scaling laws were fully consistent with electrons confined inside the nanowire. Additionally, oxygen incorporation in the wire surfaces generated an unbalanced concentration of spin up and down electrons, leading to magnetic states for the nanowires.
Resumo:
In this work, the effect of the indentation load on the results of hardness and fracture toughness, determined by Vickers micro-hardness measurements, of some glasses and glass-ceramics has been investigated. Furthermore, in order to verify the effect of crystallinity on the results, glasses of composition 52.75 wt.% 3CaO center dot P2O5, 30 wt.% SiO2 and 17.25 wt.% MgO were fused at 1600 degrees C for 4 h and annealed at 700 degrees C for 2h, and further heat-treated at 700, 775, 800 and 900 degrees C for 4h. The obtained materials were analyzed by high resolution X-ray diffraction, HRXRD, to determine the crystallization degree in function of the heat-treatment temperature. The hardness of the different specimens was determined by Vickers' micro-hardness measurements under various loads. It has been observed that with increasing crystallization of the materials their hardness increased. Furthermore, it has been possible to verify the so-called indentation size effect (ISE), i.e. hardness decreases as the indentation depth, under higher loads, increases. This effect has been more pronounced in the glass-ceramic samples. Fracture toughness has been determined by the crack length induced by the Vickers indentations and relating them to the applied loads. Glass materials presented a fracture pattern with characteristics of cleavage, forming cracks of the half-penny shaped type, while the glass-ceramic materials exhibited crack bridging effects and Palmqvist type cracks. (C) 2011 Elsevier B.V. All rights reserved.