952 resultados para mutagenic activated
Resumo:
This study describes the thermorheological, mechanical and drug release properties of novel, light-activated antimicrobial implants. Hydrogels, based on N-isopropylacrylamide (NIPAA) and hydroxyethyl methacryl ate (HEMA) and either devoid of or containing zinc tetraphenylporphyrin, were prepared by free radical polymerisation and characterised using oscillatory rheometry and texture profile analysis. Drug release was studied at both 20 and 37 degrees C. Hydrogels containing NIPAA exhibited a sol-gel temperature (Tin), which increased as the proportion of HEMA increased and was
Resumo:
The adsorption of 4-chlorophenol (4-CP) on activated carbon was studied experimentally both in the presence and in the absence of an inactivated anaerobic biofilm on the surface of carbon pellets. The presence of the biofilm markedly decreased the rate of 4-CP adsorption. However, the final near-equilibrium state (at 27 h) was not affected, and the incremental amount of material adsorbed on the pellets was similar both in the presence and in the absence of the biofilm. The biosorption of 4-CP by a biofilm coating non-adsorbing pellets was also determined. It appears that the biofilm also has some adsorption capability. Freundlich-type equations were used to correlate all data, and transient and near-equilibrium isotherms were obtained for 4-CP adsorption on different adsorbing materials at different times.
Resumo:
The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SO4 concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.
Resumo:
Silver coating of catheters has been shown to have inhibitory effects on bacterial growth and adhesion to catheter surfaces. In this study, plasma-modification was used to enhance the adhesion of an electroless silver coating on polyurethane. Both the antibacterial and antiadhesive properties of these coatings were investigated. Bacterial growth was inhibited in cultures exposed to silver-treated polyurethane compared to unmodified polyurethane. Higher growth inhibition was observed for polyurethane surfaces with lower silver coverage. Bacterial adhesion was completely inhibited on all silver-coated surfaces.
Resumo:
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H PO -acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol·L ), flow rate (1.0-3.1 cm ·min ), ionic strength (0.01-0.30 mmol·L ) and adsorbent mass (0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process. © 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP).
Resumo:
To characterize the effects of endothelin (ET)-1 on the Ca2+-activated Cl- conductance of choroidal arteriolar smooth muscle.
Resumo:
Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.