989 resultados para multiple mating
Females as mobile resources: communal roosts promote the adoption of lek breeding in a temperate bat
Resumo:
Males of lek-breeding species defend clustered territories from which they display to visiting females. However, the mechanisms leading to the adoption of clustered male display sites are often unknown. In this study, we examined the possibility of a resource-based lek in New Zealand’s lesser short-tailed bat (Mystacina tuberculata) (Mammalia: Chiroptera), by assessing the placement of “singing roosts” used by males in relation to communal roosting sites used by females. The “resource-based lek” model posits that males settle near resources required by females to increase female encounter rates. For most bat species, where females are highly mobile and widely dispersed across landscapes while foraging, communal daytime roosts dominated by females may represent such a resource. Through use of video footage, spatial analyses of singing-roost locations, and passive-integrated transponder tags we confirmed that M. tuberculata employs a lek mating system. We found that male singing roosts were significantly clustered in space, were defended by resident individuals, and were visited by females (who did not receive resources from males) for mating purposes. Transponder records also indicated that some singing roosts were shared between multiple males. Spatial logistic regression indicated that singing-roost locations were associated with communal roosting sites. Communal roosts are selected based on criteria independent of the locations of singing roosts, suggesting that males responded to the location of communal roosts and not the reverse. Mystacina tuberculata thus provides evidence of a resource-based lek, and is only the second bat species worldwide confirmed to use a lek-mating system.
Resumo:
Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to \emph{catastrophic fusion} in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal.
Resumo:
This paper outlines an approach for teaching Marketing Principles in an MBA course through service-learning to enable adult learners to connect the lectures’ marketing content to a real-world marketing project. During the course, 40 students in groups of four to five individuals were involved in eight different client-sponsored marketing projects executed simultaneously. The rationale, planning and management of this approach utilised current research on service-learning, living cases and client-sponsored projects in marketing education. The experimental curriculum design is presented in a timeline that mirrors the preparation and management of the group projects and the considerations to be taken into account when initiating and facilitating the projects. Reflections from this iteration of the service-learning design suggest the importance of: detailed project planning, the involvement of students in choosing the projects, the introduction of forms and feedback loops, the role of the instructor in facilitating the students and managing expectations, and the role of the company representative in supporting the groups.
Resumo:
We report sensitive high mass resolution ion microprobe, stable isotopes (SHRIMP SI) multiple sulfur isotope analyses (32S, 33S, 34S) to constrain the sources of sulfur in three Archean VMS deposits—Teutonic Bore, Bentley, and Jaguar—from the Teutonic Bore volcanic complex of the Yilgarn Craton, Western Australia, together with sedimentary pyrites from associated black shales and interpillow pyrites. The pyrites from VMS mineralization are dominated by mantle sulfur but include a small amount of slightly negative mass-independent fractionation (MIF) anomalies, whereas sulfur from the pyrites in the sedimentary rocks has pronounced positive MIF, with ∆33S values that lie between 0.19 and 6.20‰ (with one outlier at −1.62‰). The wall rocks to the mineralization include sedimentary rocks that have contributed no detectable positive MIF sulfur to the VMS deposits, which is difficult to reconcile with the leaching model for the formation of these deposits. The sulfur isotope data are best explained by mixing between sulfur derived from a magmatic-hydrothermal fluid and seawater sulfur as represented by the interpillow pyrites. The massive sulfide lens pyrites have a weighted mean ∆33S value of −0.27 ± 0.05‰ (MSWD = 1.6) nearly identical with −0.31 ± 0.08‰ (MSWD = 2.4) for pyrites from the stringer zone, which requires mixing to have occurred below the sea floor. We employed a two-component mixing model to estimate the contribution of seawater sulfur to the total sulfur budget of the two Teutonic Bore volcanic complex VMS deposits. The results are 15 to 18% for both Teutonic Bore and Bentley, much higher than the 3% obtained by Jamieson et al. (2013) for the giant Kidd Creek deposit. Similar calculations, carried out for other Neoarchean VMS deposits give value between 2% and 30%, which are similar to modern hydrothermal VMS deposits. We suggest that multiple sulfur isotope analyses may be used to predict the size of Archean VMS deposits and to provide a vector to ore deposit but further studies are needed to test these suggestions.
Resumo:
The native Asian oyster, Crassostrea ariakensis is one of the most common and important Crassostrea species that occur naturally along the coast of East Asia. Molecular species diagnosis is a prerequisite for population genetic analysis of wild oyster populations because oyster species cannot be discriminated reliably using external morphological characters alone due to character ambiguity. To date there have been few phylogeographic studies of natural edible oyster populations in East Asia, in particular this is true of the common species in Korea C. ariakensis. We therefore assessed the levels and patterns of molecular genetic variation in East Asian wild populations of C. ariakensis from Korea, Japan, and China using DNA sequence analysis of five concatenated mtDNA regions namely; 16S rRNA, cytochrome oxidase I, cytochrome oxidase II, cytochrome oxidase III, and cytochrome b. Two divergent C. ariakensis clades were identified between southern China and remaining sites from the northern region. In addition, hierarchical AMOVA and pairwise UST analyses showed that genetic diversity was discontinuous among wild populations of C. ariakensis in East Asia. Biogeographical and historical sea level changes are discussed as potential factors that may have influenced the genetic heterogeneity of wild C. ariakensis stocks across this region.
Resumo:
Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.
Resumo:
Genome-wide association studies (GWAS) have identified around 60 common variants associated with multiple sclerosis (MS), but these loci only explain a fraction of the heritability of MS. Some missing heritability may be caused by rare variants that have been suggested to play an important role in the aetiology of complex diseases such as MS. However current genetic and statistical methods for detecting rare variants are expensive and time consuming. 'Population-based linkage analysis' (PBLA) or so called identity-by-descent (IBD) mapping is a novel way to detect rare variants in extant GWAS datasets. We employed BEAGLE fastIBD to search for rare MS variants utilising IBD mapping in a large GWAS dataset of 3,543 cases and 5,898 controls. We identified a genome-wide significant linkage signal on chromosome 19 (LOD = 4.65; p = 1.9×10-6). Network analysis of cases and controls sharing haplotypes on chromosome 19 further strengthened the association as there are more large networks of cases sharing haplotypes than controls. This linkage region includes a cluster of zinc finger genes of unknown function. Analysis of genome wide transcriptome data suggests that genes in this zinc finger cluster may be involved in very early developmental regulation of the CNS. Our study also indicates that BEAGLE fastIBD allowed identification of rare variants in large unrelated population with moderate computational intensity. Even with the development of whole-genome sequencing, IBD mapping still may be a promising way to narrow down the region of interest for sequencing priority. © 2013 Lin et al.
Resumo:
Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10-5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility. © 2011 Ma et al.
Resumo:
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. © 2013 Mechelli et al.
Resumo:
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
Resumo:
Objective Evaluation of scapular posture is an integral component of the clinical assessment of painful neck disorders. The aim of this study was to evaluate agreement between therapist judgements of scapula posture in multiple biomechanical planes in individuals with neck pain. Design Inter-therapist reliability study. Setting Research laboratory. Participants Fifteen participants with chronic neck pain. Main outcome measures Four physiotherapists recorded ratings of scapular orientation (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane) under four test conditions (at rest, and during three isometric shoulder conditions) in all participants. Inter-therapist reliability was expressed using both generalized and paired kappa coefficient. Results Following adjustment for expected agreement and the high prevalence of neutral ratings (81%), on average both the generalised kappa (0.37) as well as Cohen's Kappa for the two therapist pairs (0.45 and 0.42) demonstrated only slight to moderate inter-therapist reliability. Conclusions The findings suggest that ratings of scapular posture in individuals with neck pain by visual inspection has only slight to moderate reliability and should only be used in conjunction with other clinical tests when judging scapula function in these patients.
Resumo:
Biopanning of phage-displayed random peptide libraries is a powerful technique for identifying peptides that mimic epitopes (mimotopes) for monoclonal antibodies (mAbs). However, peptides derived using polyclonal antisera may represent epitopes for a diverse range of antibodies. Hence following screening of phage libraries with polyclonal antisera, including autoimmune disease sera, a procedure is required to distinguish relevant from irrelevant phagotopes. We therefore applied the multiple sequence alignment algorithm PILEUP together with a matrix for scoring amino acid substitutions based on physicochemical properties to generate guide trees depicting relatedness of selected peptides. A random heptapeptide library was biopanned nine times using no selecting antibodies, immunoglobulin G (IgG) from sera of subjects with autoimmune diseases (primary biliary cirrhosis (PBC) and type 1 diabetes) and three murine ascites fluids that contained mAbs to overlapping epitope(s) on the Ross River Virus envelope protein 2. Peptides randomly sampled from the library were distributed throughout the guide tree of the total set of peptides whilst many of the peptides derived in the absence of selecting antibody aligned to a single cluster. Moreover peptides selected by different sources of IgG aligned to separate clusters, each with a different amino acid motif. These alignments were validated by testing all of the 53 phagotopes derived using IgG from PBC sera for reactivity by capture ELISA with antibodies affinity purified on the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major autoantigen in PBC: only those phagotopes that aligned to PBC-associated clusters were reactive. Hence the multiple sequence alignment procedure discriminates relevant from irrelevant phagotopes and thus a major difficulty with biopanning phage-displayed random peptide libraries with polyclonal antibodies is surmounted.
Resumo:
Purpose: Physical activity improves the health outcomes of colorectal cancer (CRC) survivors, yet few are exercising at levels known to yield health benefits. Baseline demographic, clinical, behavioral, and psychosocial predictors of physical activity at 12 months were investigated in CRC survivors. Methods: Participants were CRC survivors (n = 410) who completed a 12-month multiple health behavior change intervention trial (CanChange). The outcome variable was 12 month sufficient physical activity (≥150 min of moderate–vigorous physical activity/week). Baseline predictors included demographics and clinical variables, health behaviors, and psychosocial variables. Results: Multivariate linear regression revealed that baseline sufficient physical activity (p < 0.001), unemployment (p = 0.004), private health insurance (p = 0.040), higher cancer-specific quality of life (p = 0.031) and higher post-traumatic growth (p = 0.008) were independent predictors of sufficient physical activity at 12 months. The model explained 28.6 % of the variance. Conclusions: Assessment of demographics, health behaviors, and psychosocial functioning following a diagnosis of CRC may help to develop effective physical activity programs.
Resumo:
BACKGROUND Sedentary behavior may independently contribute to morbidity and mortality among survivors of colorectal cancer. In the current study, the authors assessed whether a telephone-delivered multiple health behavior change intervention had an effect on the sedentary behavior of recently diagnosed colorectal cancer survivors. METHODS A total of 410 participants were recruited through the Queensland Cancer Registry and randomized to the health coaching (intervention) or usual-care (control) group. Eleven health coaching sessions addressing multiple health behaviors, including sedentary behavior, were delivered over a period of 6 months. Data were collected at baseline (before randomization), at 6 months, and at 12 months via a telephone interview. RESULTS At 12 months, there was a significant decrease noted in the hours per day of sedentary time in both the health coaching (−1.21; 95% confidence interval [95% CI], −1.71 to −0.70) and usual-care groups (−0.55; 95% CI, −1.06 to −0.05), but the between-group difference was not found to be statistically significant (−0.65; 95% CI, −1.37 to 0.06 [P = .07]). In stratified subgroup analyses, the multiple health behavior change intervention was found to have a significant effect on total sedentary time (hours/day) at 12 months in survivors of colorectal cancer who were aged > 60 years (−0.90; 95% CI, −1.80 to −0.01 [P = .05]), male (−1.33; 95% CI, −2.44 to −0.21 [P = .02]), and nonobese (−1.10; 95% CI, −1.96 to −0.25; [P = .01]). CONCLUSIONS Incorporating simple messages about limiting sedentary behaviors into a multiple health behavior change intervention was found to have modest effects on sedentary behavior. A sedentary behavior-specific intervention strategy may be required to achieve substantial changes in sedentary behavior among colorectal cancer survivors
Resumo:
Background Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. Results In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. Conclusions To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the ‘best’ output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.