928 resultados para multi-way analysis
Resumo:
The effects of partial urethral obstruction on the detrusor muscle of rabbit urinary bladder were investigated using stereological sampling and estimation tools. Twelve female Norfolk rabbits (2.5-3.0 kg body weight) were divided into four groups: 3, 7 and 12 weeks after surgical intervention to produce a standard partial obstruction and unobstructed controls. Following removal, bladder axes (craniocaudal, dorsoventral and laterolateral) and organ weights were recorded. Bladders were prepared for light microscopy by multistage random sampling procedures. Stereological methods were used to estimate the volume of muscle and the packing density and total number of myocyte nuclei in each bladder. We also estimated mean myocyte volume and the mean cross-sectional area and length of myocytes. Group comparisons were made by one-way analysis of variance. Changes in bladder axes were mainly laterolateral and craniocaudal. Mean bladder weight increased roughly six-fold by 3 weeks and 17-fold by 12 weeks and was accompanied, on average, by 12- and 33-fold increases in total muscle volume. These variables did not differ at 3 and 7 weeks post-obstruction. Increases in muscle content were not accompanied by changes in packing densities but were associated with increases in the total numbers of myocyte nuclei (13-fold by 3 weeks, 28-fold by 12 weeks). Mean myocyte volume did not vary significantly between groups but cells in obstructed groups were shorter and wider. These findings support the notion that partial outflow obstruction leads to an increase in the number, but not mean volume, of myocytes. If due solely to myocyte mitosis, the total of 43 x 10(8) cells found at 12 weeks could be generated by the original complement of 15 x 10(7) cells if an average of only 2.1 x 10(6) new cells was produced every hour. In reality, even this modest proliferation rate is unlikely to be achieved because myocyte proliferation rates are very low and it is possible that new myocytes can arise by differentiation of mesenchymal or other precursor cells.
Resumo:
Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.
Resumo:
Statement of problem. Highly polished enamel surfaces arc recommended for axial tooth surfaces that will serve as guiding planes and be contacted by component parts of a removable partial denture. There is little evidence to support the assumption that this tooth modification will provide accurate adaptation of the framework and prevent build-up of plaque.Purpose. The aim of this investigation was to evaluate the surface roughness of the tooth enamel, prepared to serve as guiding planes, with different polishing systems.Material and methods. Four different methods (designated A, B, C, and D) for finishing and polishing the prepared enamel surfaces of 20 freshly extracted third molar teeth were studied. Each method involved 3, 4, or 5 different steps. The roughness of each specimen was measured at the start of each method before recontouring, after recontouring, and after each step of the 4 finishing and polishing procedures. The 4 experimental finishing methods were applied after recontouring the axial surfaces (buccal, lingual, and proxinial) of each tooth. Thus the 20 teeth (60 surfaces) were finished and polished by use of 1 of the experimental methods. Surface roughness was measured with a profilometer (mum); the readings of the unpolished enamel Surfaces were recorded as control measurements. Results were statistically analyzed with one-way analysis of variance followed by Tukey's test at the 95% level of confidence.Results. The highest roughness mean values (14.41 mum to 16.44 mum) were found when the diamond bur was used at a high speed for tooth preparation. A significant decrease in roughness values was observed with the diamond bur at a low speed (P<.05). Analysis of the roughness values revealed that all polishing methods produced surface roughness similar to that of the corresponding control teeth.Conclusion. Within the limitations of this study, all finishing procedures tested effectively promoted an enamel surface similar to the original unpolished enamel.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
Statement of problem. Although most of the physical properties of denture base resin polymerized by microwave energy have been shown to be similar to resins polymerized by the conventional heat polymerization method, the presence of porosity is a problem.Purpose. This study evaluated the effect of different microwave polymerization cycles on the porosity of a denture base resin designed for microwave polymerization.Material and methods. Thirty-two rectangular resin specimens (65 X 40 X 5 mm) were divided into 3 experimental groups (A, B, and C; Onda-Cryl, microwave-polymerized resin) and I control group (T; Classico, heat-polymerized resin), according to the following polymerization cycles: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes, and (T) 74degreesC for 9 hours. Porosity was calculated by measurement of the specimen volume before and after its immersion in water. Data were analyzed using 1-way analysis of variance (alpha = .05).Results. The mean values and SDs of the percent mean porosity were: A = 1.05% +/- 0.28%, B = 0.91% +/- 0.15%, C = 0.88% +/- 0.23%, T = 0.93% +/- 0.23%. No significant differences were found in mean porosity among the groups evaluated.Conclusion. Within the limitations of this study, a denture base resin specifically designed for microwave Polymerization tested was not affected by different polymerization cycles. Porosity was similar to the conventional heat-polymerized denture base resin tested.
Resumo:
Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.
Resumo:
Statement of problem. Microwave postpolymerization has been Suggested as a method to improve the mechanical strength of repaired denture base materials. However, the effect of microwave heating oil the flexural strength of the autopolymerizing denture reline resins has not been investigated.Purpose. This study analyzed the effect of microwave postpolymerization on the flexural strength of 4 autopolymerizing reline resins (Duraliner II, Kooliner, Ufi Gel Hard, and Tokuso Rebase Fast) and 1 heat-polymerized resin (Lucitone 550).Material and methods. For each material, 80 specimens (64 X 10 X 3.3 mm) were polymerized according to the manufacturer's instructions and divided into 10 groups (n = 8). Control group specimens remained as processed. Before testing, the specimens were Subjected to postpolymerization in a microwave oven using different power (500, 5,50, or 650 W) and time (3, 4, or 5 Minutes) settings. Load measurements (newtons) were made at a crosshead speed of 5 mm/min using a 3-point bending device with a span of 50 mill. The flexural strength values were calculated in MPa. Data analyses included 3-way and 2-way analysis of variance and the Tukey Honestly Significant Difference test (alpha=.05).Results. The flexural strengths of resins Duraliner 11 and Kooliner were significantly increased (P=.0015 and P=.0046, respectively) with the application of microwave irradiation using different time/power combinations. The materials Lucitone 550, Tokuso Rebase Fast, and Ufi Gel Hard demonstrated no significant strength improvement compared to the corresponding control. Only after microwave postpolymerization irradiation for 3 minutes at 550 W did Lucitione 550 show significantly higher flexural strength than Tokuso Rebase Fast and Ufi Gel Hard relining resins.Conclusion. Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of Duraliner II (at 650 W) and Kooliner (at 550 W and 650 W for 5 minutes).
Resumo:
Objective: the aim of this investigation was to evaluate the cervical adaptation of metal crowns under several conditions, namely (1) variations in the cervical finish line of the preparation, (2) application of internal relief inside the crowns, and (3) cementation using different luting materials. Method and Materials: One hundred eighty stainless-steel master dies were prepared simulating full crown preparations: 60 in chamfer (CH), 60 in 135-degree shoulder (OB), and 60 in rounded shoulder (OR). The finish lines were machined at approximate dimensions of a molar tooth preparation (height: 5.5 mm; cervical diameter: 8 mm; occlusal diameter: 6.4 mm; taper degree: 6; and cervical finish line width: 0.8 mm). One hundred eighty corresponding copings with the same finish lines were fabricated. A 30-mu m internal relief was machined 0.5 mm above the cervical finish line in 90 of these copings. The fit of the die and the coping was measured from all specimens (L0) prior to cementation using an optical microscope. After manipulation of the 3 types of cements (zinc phosphate, glass-ionomer, and resin cement), the coping was luted on the corresponding standard master die under 5-kgf loading for 4 minutes. Vertical discrepancy was again measured (L1), and the difference between L1 and L0 indicated the cervical adaptation. Results: Significant influence of the finish line, cement type, and internal relief was observed on the cervical adaptation (P < .001). The CH type of cervical finish line resulted in the best cervical adaptation of the metal crowns regardless of the cement type either with or without internal relief (36.6 +/- 3 to 100.8 +/- 4 mu m) (3-way analysis of variance and Tukey's test, alpha = .05). The use of glass-ionomer cement resulted in the least cervical discrepancy (36.6 +/- 3 to 115 +/- 4 mu m) than those of other cements (45.2 +/- 4 to 130.3 +/- 2 mu m) in all conditions. Conclusion: the best cervical adaptation was achieved with the chamfer type of finish line. The internal relief improved the marginal adaptation significantly, and the glass-ionomer cement led to the best cervical adaptation, followed by zinc phosphate and resin cement.
Resumo:
Statement of problem. Acrylic resin denture teeth soften upon immersion in water, and the heating generated during microwave sterilization may enhance this process.Purpose. Six brands of acrylic resin denture teeth were investigated with respect to the effect of microwave sterilization and water immersion on Vickers hardness (VHN).Material and Methods. The acrylic resin denture teeth (Dentron [D], Vipi Dent Plus [V], Postaris [P], Biolux [B], Trilux [T], and Artiplus [A]) were embedded in heat-polymerized acrylic resin within polyvinylchloride tubes. For each brand, the occlusal surfaces of 32 identical acrylic resin denture posterior teeth were ground flat with 1500-grit silicon carbide paper and polished on a wet polishing wheel with a slurry of tin oxide. Hardness tests were performed after polishing (control group, C) after polishing followed by 2 cycles of microwave sterilization at 650 W for 6 minutes (MwS group), after polishing followed by 90-day immersion in water (90-day Wim group), and after polishing followed by 90-day storage in water and 2 cycles of microwave sterilization (90-day Wim + MwS group). For each specimen, 8 hardness measurements were made and the mean was calculated. Data were analyzed with a 2-way analysis of variance followed by the Bonferroni procedure to determine any significance between pairs of mean values (alpha=.01).Results: Mircrowave sterilization of specimens significantly decreased (P <.001) the hardness of the acrylic resin denture tooth specimens P (17.8 to 16.6 VHN, V (18.3 to 15.8 VHN), T (17.4 to 15.3 VHN), B (16.8 to 15.7 VHN), and A (17.3 to 15.7 VHN). For all acrylic resin denture teeth, no significant differences in hardness were found between the groups Mws, 90-day Wim, and 90-day Wim + MwS, with the exception of the 90-day Wim + MwS tooth A specimens (14.4 VHN), which demonstrated significant lower mean values (P <.001) than the 90-day Wim (15.8 VHN) and MwS (15.7 VHN) specimens.Conclusions. For specimens immersed in water for 90 days, 2 cycles of microwave sterilization had no effect on the hardness of most of the acrylic resin denture teeth.
Resumo:
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.
Resumo:
The aim of the present study was to assess the effect of the use of high-heeled shoes on static balance in young adult women. Fifty-three women between 18 and 30 years of age and accustomed to wearing high-heeled shoes participated in the study. None of the participants had any orthopedic or neurologic alterations. Static balance was assessed using a force plate. Oscillations from the center of pressure in the mediolateral and anteroposterior directions were measured both when barefoot and when wearing high-heeled shoes [7 centimeters (cm) in height and 1 cm in diameter] under the conditions of eyes open and eyes closed. Two-way analysis of variance was employed for the statistical analysis, with the level of significance set at 5% (p < .05). The results revealed statistically significant differences between tests when barefoot and when wearing high-heeled shoes as well as with eyes open and eyes closed (p < .01). With the use of high-heeled shoes, there was a significant increase in mediolateral oscillation with eyes closed (p < .01). The present study demonstrates that the use of seven-cm high heels altered static balance in the healthy young women analyzed, increasing the oscillation of the center of pressure, regardless of visual restriction. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Several studies have shown a reduction in enamel bond strengths when the bonding procedure is carried out immediately after vital bleaching with peroxides. This reduction in bond strengths has become a concern in cosmetic dentistry with the introduction of new in-office and waiting-room bleaching techniques. The aim of this in vitro study was to evaluate the effect of three bleaching regimens: 35% hydrogen peroxide (HP), 35% carbamide peroxide (CP), and 10% CP, on dentin bond strengths. Materials and Methods: One hundred and twenty fresh bovine incisors were used in this study. The labial surface of each tooth was ground flat to expose dentin and was subsequently polished with 600-grit wet silicon carbide paper. The remaining dentin thickness was monitored and kept at an average of 2 mm. The teeth were randomly assigned to four bleaching regimens (n = 30): (A) control, no bleaching treatment; (B) 35% HP for 30 minutes; (C) 35% CP for 30 minutes; and (D) 10% CP for 6 hours. For each group, half of the specimens (n = 15) were bonded with Single Bond/Z100 immediately after the bleaching treatment, whereas the other half was bonded after the specimens were stored for 1 week in artificial saliva at 37°C. The specimens were fractured in shear using an Instron machine. Results: For the groups bonded immediately after bleaching, one-way analysis of variance (ANOVA) followed by the Duncan's post hoc test revealed a statistically significant reduction in bond strengths in a range from 71% to 76%. For the groups bonded at 1 week, one-way ANOVA showed that group B (35% HP for 30 min) resulted in the highest bond strengths, whereas 10% CP resulted in the lowest bond strengths. Student's t-test showed that delayed bonding resulted in a significant increase in bond strengths for groups B (35% HP) and C (35% CP); whereas the group bleached with 10% CP (group D) remained in the same range obtained for immediate bonding. Storage in artificial saliva also affected the control group, reducing its bond strengths to 53% of the original. ©2000 BC Decker Inc.
Resumo:
OBJECTIVE: To evaluate the effects of 2 different doses of exogenous surfactant on pulmonary mechanics and on the regularity of pulmonary parenchyma inflation in newborn rabbits. METHOD: Newborn rabbits were submitted to tracheostomy and randomized into 4 study groups: the Control group did not receive any material inside the trachea; the MEC group was instilled with meconium, without surfactant treatment; the S100 and S200 groups were instilled with meconium and were treated with 100 and 200 mg/kg of exogenous surfactant (produced by Instituto Butantan) respectively. Animals from the 4 groups were mechanically ventilated during a 25-minute period. Dynamic compliance, ventilatory pressure, tidal volume, and maximum lung volume (P-V curve) were evaluated. Histological analysis was conducted using the mean linear intercept (Lm), and the lung tissue distortion index (SDI) was derived from the standard deviation of the means of the Lm. One-way analysis of variance was used with a = 0.05. RESULTS: After 25 minutes of ventilation, dynamic compliance (mL/cm H2O.kg) was 0.87 +/- 0.07 (Control); 0.49 +/- 0.04 (MEC*); 0.67 +/- 0.06 (S100); and 0.67 +/- 0.08 (S200), and ventilatory pressure (cm H2O) was 9.0 +/- 0.9 (Control); 16.5 +/- 1.7 (MEC*); 12.4 +/- 1.1 (S100); and 12.1 +/- 1.5 (S200). Both treated groups had lower Lm values and more homogeneity in the lung parenchyma compared to the MEC group: SDI = 7.5 +/- 1.9 (Control); 11.3 +/- 2.5 (MEC*), 5.8 +/- 1.9 (S100); and 6.7 +/- 1.7 (S200) (*P < 0.05 versus all the other groups). CONCLUSIONS: Animals treated with surfactant showed significant improvement in pulmonary mechanics and more regularity of the lung parenchyma in comparison to untreated animals. There was no difference in results after treatment with either of the doses used.