994 resultados para morphological bone healing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to analyse a skeleton (adult female, 25-30 years) that presented evidence of tuberculous spondylitis. The skeleton, dated from the Roman Period (III-VI centuries), was excavated near the town of Győr, in western Hungary. The skeleton was examined by gross observation supplemented with mycolic acid and proteomic analyses using MALDI-TOF/TOF tandem mass spectrometry. The biomolecular analyses supported the morphological diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES This study was designed to assess effects of cholinergic stimulation using acetylcholinesterase inhibitors (AChEIs), a group of drugs that stimulate cholinergic receptors and are used to treat Alzheimer's disease (AD), on healing of hip fractures. METHODS A retrospective cohort study was performed using 46-female AD patients, aged above 75 years, who sustained hip fractures. Study analyses included the first 6-months after hip fracture fixation procedure. Presence of AChEIs was used as predictor variable. Other variables that could affect study outcomes: age, body mass index (BMI), mental state or type of hip fracture, were also included. Radiographic union at fracture site (Hammer index), bone quality (Singh index) and fracture healing complications were recorded as study outcomes. The collected data was analyzed by student's-t, Mann-Whitney-U and chi-square tests. RESULTS No significant differences in age, BMI, mental state or type of hip fracture were observed between AChEIs-users and nonusers. However, AChEIs-users had better radiographic union at the fracture site (relative risk (RR),2.7; 95%confidence interval (CI),0.9-7.8), better bone quality (RR,2.0; 95%CI,1.2-3.3) and fewer healing complications (RR,0.8; 95%CI,0.7-1.0) than nonusers. CONCLUSION In elderly female patients with AD, the use of AChEIs might be associated with an enhanced fracture healing and minimized complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

?  Introduction ?  Bone fracture healing and healing problems ?  Biomaterial scaffolds and tissue engineering in bone formation -  Bone tissue engineering -  Biomaterial scaffolds -  Synthetic scaffolds -  Micro- and nanostructural properties of scaffolds -  Conclusion ?  Mesenchymal stem cells and osteogenesis -  Bone tissue -  Origin of osteoblasts -  Isolation and characterization of bone marrow derived MSC -  In vitro differentiation of MSC into osteoblast lineage cells -  In vivo differentiation of MSC into bone -  Factors and pathways controlling osteoblast differentiation of hMSC -  Defining the relationship between osteoblast and adipocyte differentiation from MSC -  MSC and sex hormones -  Effect of aging on osteoblastogenesis -  Conclusion ?  Embryonic, foetal and adult stem cells in osteogenesis -  Cell-based therapies for bone -  Specific features of bone cells needed to be advantageous for clinical use -  Development of therapeutic biological agents -  Clinical application concerns -  Conclusion ?  Platelet-rich plasma (PRP), growth factors and osteogenesis -  PRP effects in vitro on the cells involved in bone repair -  PRP effects on osteoblasts -  PRP effects on osteoclasts -  PRP effects on endothelial cells -  PRP effects in vivo on experimental animals -  The clinical use of PRP for bone repair -  Non-union -  Distraction osteogenesis -  Spinal fusion -  Foot and ankle surgery -  Total knee arthroplasty -  Odontostomatology and maxillofacial surgery -  Conclusion ?  Molecular control of osteogenesis -  TGF-β signalling -  FGF signalling -  IGF signalling -  PDGF signalling -  MAPK signalling pathway -  Wnt signalling pathway -  Hedgehog signalling -  Notch signalling -  Ephrin signalling -  Transcription factors regulating osteoblast differentiation -  Conclusion ?  Summary This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD34/QBEND10 immunostaining has been assessed in 150 bone marrow biopsies (BMB) including 91 myelodysplastic syndromes (MDS), 16 MDS-related AML, 25 reactive BMB, and 18 cases where RA could neither be established nor ruled out. All cases were reviewed and classified according to the clinical and morphological FAB criteria. The percentage of CD34-positive (CD34 +) hematopoietic cells and the number of clusters of CD34+ cells in 10 HPF were determined. In most cases the CD34+ cell count was similar to the blast percentage determined morphologically. In RA, however, not only typical blasts but also less immature hemopoietic cells lying morphologically between blasts and promyelocytes were stained with CD34. The CD34+ cell count and cluster values were significantly higher in RA than in BMB with reactive changes (p<0.0001 for both), in RAEB than in RA (p=0.0006 and p=0.0189, respectively), in RAEBt than in RAEB (p=0.0001 and p=0.0038), and in MDS-AML than in RAEBt (p<0.0001 and p=0.0007). Presence of CD34+ cell clusters in RA correlated with increased risk of progression of the disease. We conclude that CD34 immunostaining in BMB is a useful tool for distinguishing RA from other anemias, assessing blast percentage in MDS cases, classifying them according to FAB, and following their evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To analyze the influence of age on retinochoroidal wound healing processes and on glial growth factor and cytokine mRNA expression profiles observed after argon laser photocoagulation. METHODS: A cellular and morphometric study was performed that used 44 C57Bl/6J mice: 4-week-old mice (group I, n=8), 6-week-old mice (group II, n=8), 10-12-week-old mice (group III, n=14), and 1-year-old mice (group IV, n=14). All mice in these groups underwent a standard argon laser photocoagulation (50 microm, 400 mW, 0.05 s). Two separated lesions were created in each retina using a slit lamp delivery system. At 1, 3, 7, 14, 60 days, and 4 months after photocoagulation, mice from each of the four groups were sacrificed by carbon dioxide inhalation. Groups III and IV were also studied at 6, 7, and 8 months after photocoagulation. At each time point the enucleated eyes were either mounted in Tissue Tek (OCT), snap frozen and processed for immunohistochemistry or either flat mounted (left eyes of groups III and IV). To determine, by RT-PCR, the time course of glial fibrillary acidic protein (GFAP), vascular endothelial growth factor (VEGF), and monocyte chemotactic protein-1 (MCP-1) gene expression, we delivered ten laser burns (50 microm, 400 mW, 0.05 s) to each retina in 10-12-week-old mice (group III', n=10) and 1-year-old mice (group IV', n=10). Animals from Groups III' and IV' had the same age than those from Groups III and IV, but they received ten laser impacts in each eye and served for the molecular analysis. Mice from Groups III and IV received only two laser impacts per eye and served for the cellular and morphologic study. Retinal and choroidal tissues from these treated mice were collected at 16 h, and 1, 2, 3, and 7 days after photocoagulation. Two mice of each group did not receive photocoagulation and were used as controls. RESULTS: In the cellular and morphologic study, the resultant retinal pigment epithelium interruption expanse was significantly different between the four groups. It was more concise and smaller in the oldest group IV (112.1 microm+/-11.4 versus 219.1 microm+/-12.2 in group III) p<0.0001 between groups III and IV. By contrast, while choroidal neovascularization (CNV) was mild and not readily identifiable in group I, at all time points studied, CNV was more prominent in the (1-year-old mice) Group IV than in the other groups. For instance, up to 14 days after photocoagulation, CNV reaction was statistically larger in group IV than in group III ((p=0.0049 between groups III and IV on slide sections and p<0.0001 between the same groups on flat mounts). Moreover, four months after photocoagulation, the CNV area (on slide sections) was 1,282 microm(2)+/-90 for group III and 2,999 microm(2)+/-115 for group IV (p<0.0001 between groups III and IV). Accordingly, GFAP, VEGF, and MCP-1 mRNA expression profiles, determined by RT-PCR at 16 h, 1, 2, 3, and 7 days postphotocoagulation, were modified with aging. In 1-year-old mice (group IV), GFAP mRNA expression was already significantly higher than in the younger (10-12 week) group III before photocoagulation. After laser burns, GFAP mRNA expression peaked at 16-24 h and on day 7, decreasing thereafter. VEGF mRNA expression was markedly increased after photocoagulation in old mice eyes, reaching 2.7 times its basal level at day 3, while it was only slightly increased in young mice (1.3 times its level in untreated young mice 3 days postphotocoagulation). At all time points after photocoagulation, MCP-1 mRNA expression was elevated in old mice, reaching high levels of expression at 16 h and day 3 respectively. CONCLUSIONS: Our results were based on the study of four different age groups and included not only data from morphological observations but also from a molecular analysis of the various alterations of cytokine signaling and expression. One-year-old mice demonstrated more extensive CNV formation and a slower pace of regression after laser photocoagulation than younger mice. These were accompanied by differences in growth factors and cytokine expression profiles indicate that aging is a factor that aggravates CNV. The above results may provide some insight into possible therapeutic strategies in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of defects in the craniomaxillofacial (CMF) area has mainly been based on bone grafts or metallic fixing plates and screws. Particularly in the case of large calvarial and/or craniofacial defects caused by trauma, tumours or congenital malformations, there is a need for reliable reconstruction biomaterials, because bone grafts or metallic fixing systems do not completely fulfill the criteria for the best possible reconstruction methods in these complicated cases. In this series of studies, the usability of fibre-reinforced composite (FRC) was studied as a biostable, nonmetallic alternative material for reconstructing artificially created bone defects in frontal and calvarial areas of rabbits. The experimental part of this work describes the different stages of the product development process from the first in vitro tests with resin-impregnated fibrereinforced composites to the in vivo animal studies, in which this FRC was tested as an implant material for reconstructing different size bone defects in rabbit frontal and calvarial areas. In the first in vitro study, the FRC was polymerised in contact with bone or blood in the laboratory. The polymerised FRC samples were then incubated in water, which was analysed for residual monomer content by using high performance liquid chromatography (HPLC). It was found that this in vitro polymerisation in contact with bone and blood did not markedly increase the residual monomer leaching from the FRC. In the second in vitro study, different adhesive systems were tested in fixing the implant to bone surface. This was done to find an alternative implant fixing system to screws and pins. On the basis of this study, it was found that the surface of the calvarial bone needed both mechanical and chemical treatments before the resinimpregnated FRC could be properly fixed onto it. In three animal studies performed with rabbit frontal bone defects and critical size calvarial bone defect models, biological responses to the FRC implants were evaluated. On the basis of theseevaluations, it can be concluded that the FRC, based on E-glass (electrical glass) fibres forming a porous fibre veil enables the ingrowth of connective tissues to the inner structures of the material, as well as the bone formation and mineralization inside the fibre veil. Bone formation could be enhanced by using bioactive glass granules fixed to the FRC implants. FRC-implanted bone defects healed partly; no total healing of defects was achieved. Biological responses during the follow-up time, at a maximum of 12 weeks, to resin-impregnated composite implant seemed to depend on the polymerization time of the resin matrix of the FRC. Both of the studied resin systems used in the FRC were photopolymerised and the heat-induced postpolymerisation was used additionally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +- 0.58 (m +- SE) and 1.00 +- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinase-13 (MMP-13) is a potent proteolytic enzyme, whose expression has been previously associated with fetal bone development and postnatal bone remodeling and with adult gingival wound healing. MMP-13 is also known to be involved in the growth and invasion of various cancers including squamous cell carcinoma (SCC) of the skin. The aim of this study was to further elucidate the function and regulation of MMP-13 in wound repair and cancer. In this study, it was shown that fetal skin fibroblasts express MMP-13 in response to transforming growth factor-β in a p38 MAP kinase dependent manner. In addition, MMP-13 was found to be expressed in vivo by wound fibroblasts in human fetal skin grafted on SCID mice. Adenovirally delivered expression of MMP-13 enhanced collagen matrix contraction by fibroblasts in vitro in association with altered cytoskeletal structure, enhanced proliferation and survival. These results indicate that MMP-13 is involved in cell-mediated collagen matrix remodeling and suggest a role for MMP-13 in superior matrix remodeling and scarless healing of fetal skin wounds. Using an MMP-13 deficient mouse strain, it was shown that MMP-13 is essential for the normal development of experimental granulation tissue in mice. MMP-13 was implicated in the regulation of myofibroblast function and angiogenesis and the expression of genes involved in cellular proliferation and movement, immune response, angiogenesis and proteolysis. Finally, epidermal mitogen, keratinocyte growth factor (KGF) was shown to suppress the malignant properties of skin SCC cells by downregulating the expression of several target genes with potential cancer promoting properties, including MMP-13, and by reducing SCC cell invasion. These results provide evidence that MMP-13 potently regulates cell viability, myofibroblast function and angiogenesis associated with wound healing and cancer. In addition, fibroblasts expressing MMP-13 show high collagen reorganization capacity. Moreover, the results suggest that KGF mediates the anti-cancer effects on skin SCC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the use of the medial gastrocnemius muscle and/or soleus muscle flaps as surgical treatment of the leg bone exposure.Methods: We retrospectively analyzed the medical records of patients undergoing transposition of the medial gastrocnemius and / or soleus for treating exposed bone in the leg, from January 1976 to July 2009, gathering information on epidemiological data, the etiology the lesion, the time between the initial injury and muscle transposition, the muscle used to cover the lesion, the healing evolution of the skin coverage and the function of the gastrocnemius-soleus unit.Results: 53 patients were operated, the ages varying between nine and 84 years (mean age 41); 42 were male and 11 female. The main initial injury was trauma (84.8%), consisting of tibia and / or fibula fracture. The most frequently used muscle was the soleus, in 40 cases (75.5%). The rank of 49 patients (92.5%) was excellent or good outcome, of three (5.6%) as regular and of one (1.9%) as unsatisfactory.Conclusion: the treatment of bone exposure with local muscle flaps (gastrocnemius and/or soleus) enables obtaining satisfactory results in covering of exposed structures, favoring local vascularization and improving the initial injury. It offers the advantage of providing a treatment in only one surgical procedure, an earlier recovery and reduced hospital stay.