954 resultados para momentum dissipation
Resumo:
Galactic stellar clusters have a great variety of physical properties that make valuable probes of stellar and galactic chemical evolution. Current studies show a discrepancy between the standard evolutionary models and observations, mainly considering the level of mixing and convective dilution of light elements, as well as to the evolution of the angular momentum. In order to better settle some of these properties, we present a detailed spectroscopic analysis of 28 evolved stars, from the turn-off to the RGB, belonging to the stellar open cluster M67. The observations were performed using UVES+FLAMES at VLT/UT2. We determined stellar parameters and metallicity from LTE analysis of Fe I and Fe II lines between 420 1100 nm. The Li abundance was obtained using the line at 6707.78 ˚A, for the whole sample of stars. The Li abundances of evolved stars of M67 present a gradual decreasing when decreasing the effective temperature. The Li dilution factor for giant stars of M67 with Teff ∼ 4350K is at least 2300 times greater than that predicted by standard theory for single field giant stars. The Li abundance as a function of rotation exhibits a good correlation for evolved stars of M67, with a much smaller dispersion than the field evolved stars. The mass and the age seem to be some of the parameters that influence this connection. We discovered a Li-rich subgiant star in M67 (S1242). It is member of a spectroscopic binary system with a high eccentricity. Its Li abundance is 2.7, the highest Li content ever measured for an evolved star in M67. Two possibilities could explain this anomalous Li content: (i) preservation of the Li at the post turn off stage due to tidal effects, or (ii) an efficient dredge-up of Li, hidden below the convective zone by atomic diffusion occurring in the post turn off stage. We also study the evolution of the angular momentum for the evolved stars in M67. The results are in agreement with previous studies dedicated to evolved stars of this cluster, where stars in the same region of the CM-diagram have quite similar rotations, but with values that indicate an extra breaking along the main sequence. Finally, we analize the distributions of the average rotational velocity and of the average Li abundance as a function of age. With relation to the average Li abundances, stars in clusters and field stars present the same type of exponencial decay law t−β. Such decay is observed for ages lesser than 2 Gyr. From this age, is observed that the average Li abundance remain constant, differently of the one observed in the rotation age connection, where the average rotational velocity decreases slowly with age
Resumo:
We derive a closed-form analytic expression in momentum space for the asymptotic non-hydrogenic wavefunction of the quantum defect theory (QDT) due to Seaton and compare it with a widely used QDT-approximate wavefunction for the Rydberg states Li-3(2s), Mg-24(6s) and Rb-37(5s).
Resumo:
We use the time-dependent mean-field Cross-Pitaevskii equation to study the formation of a dynamically-stabilized dissipation managed bright soliton in a quasi-one dimensional Bose-Einstein condensate (BEC). Because of three-body recombination of bosonic atoms to molecules, atoms are lost (dissipated) from a BEC. Such dissipation leads to the decay of a BEC soliton. We demonstrate by a perturbation procedure that an alimentation of atoms from an external source to the BEC may compensate for the dissipation loss and lead to a dynamically-stabilized soliton. The result of the analytical perturbation method is in excellent agreement with mean-field numerics. It seems possible to obtain such a dynamically stabilized BEC soliton without dissipation in laboratory.
Resumo:
We work on some general extensions of the formalism for theories which preserve the relativity of inertial frames with a nonlinear action of the Lorentz transformations on momentum space. Relativistic particle models invariant under the corresponding deformed symmetries are presented with particular emphasis on deformed dilatation transformations. The algebraic transformations relating the deformed symmetries with the usual (undeformed) ones are provided in order to preserve the Lorentz algebra. Two distinct cases are considered: a deformed dilatation transformation with a spacelike preferred direction and a very special relativity embedding with a lightlike preferred direction. In both analysis we consider the possibility of introducing quantum deformations of the corresponding symmetries such that the spacetime coordinates can be reconstructed and the particular form of the real space-momentum commutator remains covariant. Eventually feasible experiments, for which the nonlinear Lorentz dilatation effects here pointed out may be detectable, are suggested.
Resumo:
We discuss the electromagnetic energy-momentum distribution and the mechanical forces of the electromagnetic field in material media. There is a long-standing controversy on these notions. The Minkowski and the Abraham energy-momentum tensors are the most well-known ones. We propose a solution of this problem which appears to be natural and self-consistent from both a theoretical and an experimental point of view. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider the entanglement of closed bosonic strings intersecting the event horizon of a Rindler spacetime, and, by using some simplified (rather semiclassical) arguments and some elements of the string field theory, we show the existence of a critical temperature beyond which closed strings cannot be in thermal equilibrium. The order of magnitude of this critical value coincides with the Hagedorn temperature, which suggests an interpretation consistent with the fact of having a partition function that is ill defined for temperatures higher than it. Possible implications of the present approach for the microscopical structure of stretched horizons are also pointed out.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present a measurement of the shape of the Z/gamma* boson transverse momentum (q(T)) distribution in p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV using 0.98 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low q(T), but above the perturbative QCD calculation in the region of q(T)> 30 GeV/c. Using events with q(T)< 30 GeV/c, we extract the value of g(2), one of the nonperturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.