930 resultados para molecular mechanics water simulation
Resumo:
A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.
Resumo:
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Resumo:
Over the past 50 years there has been considerable progress in our understanding of biomolecular interactions at an atomic level. This in turn has allowed molecular simulation methods employing full atomistic modeling at ever larger scales to develop. However, some challenging areas still remain where there is either a lack of atomic resolution structures or where the simulation system is inherently complex. An area where both challenges are present is that of membranes containing membrane proteins. In this review we analyse a new practical approach to membrane protein study that offers a potential new route to high resolution structures and the possibility to simplify simulations. These new approaches collectively recognise that preservation of the interaction between the membrane protein and the lipid bilayer is often essential to maintain structure and function. The new methods preserve these interactions by producing nano-scale disc shaped particles that include bilayer and the chosen protein. Currently two approaches lead in this area: the MSP system that relies on peptides to stabilise the discs, and SMALPs where an amphipathic styrene maleic acid copolymer is used. Both methods greatly enable protein production and hence have the potential to accelerate atomic resolution structure determination as well as providing a simplified format for simulations of membrane protein dynamics.
Resumo:
The physics of self-organization and complexity is manifested on a variety of biological scales, from large ecosystems to the molecular level. Protein molecules exhibit characteristics of complex systems in terms of their structure, dynamics, and function. Proteins have the extraordinary ability to fold to a specific functional three-dimensional shape, starting from a random coil, in a biologically relevant time. How they accomplish this is one of the secrets of life. In this work, theoretical research into understanding this remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are used in order to investigate the protein folding dynamics and stability. Theoretical analyses of the results from computer simulation of the dynamics of a four-helix bundle show that the excluded volume entropic effects are very important in protein dynamics and crucial for protein stability. The dramatic effects of changing the size of sidechains imply that a strategic placement of amino acid residues with a particular size may be an important consideration in protein engineering. Another investigation deals with modeling protein structural transitions as a phase transition. Using finite size scaling theory, the nature of unfolding transition of a four-helix bundle protein was investigated and critical exponents for the transition were calculated for various hydrophobic strengths in the core. It is found that the order of the transition changes from first to higher order as the strength of the hydrophobic interaction in the core region is significantly increased. Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two-helix bundle. The connection between the structural free-energy landscape and folding kinetics was quantified. I show how simple protein engineering, by changing the hydropathy of a small number of amino acids, can enhance protein folding by significantly changing the free energy landscape so that kinetic traps are removed. The results have general applicability in protein engineering as well as understanding the underlying physical mechanisms of protein folding. ^
Resumo:
Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.
Resumo:
In this study, our goal was develop and describe a molecular model of the enzyme-inhibiting interaction which can be used for an optimized projection of a Microscope Force Atomic nanobiosensor to detect pesticides molecules, used in agriculture, to evaluate its accordance with limit levels stipulated in valid legislation for its use. The studied herbicide (imazaquin) is a typical member of imidazolinone family and is an inhibitor of the enzymatic activity of Acetohydroxiacid Synthase (AHAS) enzyme that is responsible for the first step of pathway for the synthesis of side-chains in amino acids. The analysis of this enzyme property in the presence of its cofactors was made to obtain structural information and charge distribution of the molecular surface to evaluate its capacity of became immobilized on the Microscopy Atomic Force tip. The computational simulation of the system, using Molecular Dynamics, was possible with the force-field parameters for the cofactor and the herbicides obtained by the online tool SwissParam and it was implemented in force-field CHARMM27, used by software GROMACS; then appropriated simulations were made to validate the new parameters. The molecular orientation of the AHAS was defined based on electrostatic map and the availability of the herbicide in the active site. Steered Molecular Dynamics (SMD) Simulations, followed by quantum mechanics calculations for more representative frames, according to the sequential QM/MM methodology, in a specific direction of extraction of the herbicide from the active site. Therefore, external harmonic forces were applied with similar force constants of AFM cantilever for to simulate herbicide detection experiments by the proposed nanobiosensor. Force value of 1391 pN and binding energy of -14048.52 kJ mol-1 were calculated.
Resumo:
Water remains a predominant vector for human enteric pathogens not just for developing countries but also developed nations, where numerous infectious disease outbreaks, linked to the contamination of drinking water have been documented. Private drinking water wells are a source of drinking water that is largely unstudied even though a significant percentage of the population in Ontario relies on wells as their primary water source. As there exists little to no systematic surveillance for enteric infections or outbreaks related to well water sources, these individuals may be at higher risk of waterborne infectious diseases. The relationships between various fecal indicators in the water of private drinking water wells, including E. coli, Total Coliforms (TC) and Bacteroides, and enteric pathogens, including Campylobacter jejuni, Salmonella spp., and Shiga toxin producing E. coli, were studied. Convenience private well water samples collected from various regions of interest during the summer of 2014 underwent membrane filtration and culture to determine quantities of E. coli and TC colony forming units. 289 E. coli positive and 230 TC-only waters were successfully analyzed by individual qPCR assays for the aforementioned enteric pathogens. Microbial source tracking methods targeted to specific Bacteroides were used to determine the source of fecal contamination as either human or bovine. The source of fecal contamination varied by geographic region and is thought to be due to such things as differences in septic tank density and underlying geology, among others. Fecal indicators, E. coli and Bacteroides, were significantly correlated. E. coli as measured by qPCR was more strongly correlated to both total and human-specific Bacteroides genetic markers than culturable E. coli. Lastly, 1.9% of samples showed molecular evidence of contamination with enteric pathogens. Although low, this finding is significant given the limited volume of water available for testing, and suggests a potential health risk to consumers. Knowing the extent of contamination, as well as the biologic source, can better inform risk assessment and the development of potential intervention strategies for private well water in specific regions of Ontario.
Resumo:
During nanoindentation and ductile-regime machining of silicon, a phenomenon known as “self-healing” takes place in that the microcracks, microfractures, and small spallings generated during the machining are filled by the plastically flowing ductile phase of silicon. However, this phenomenon has not been observed in simulation studies. In this work, using a long-range potential function, molecular dynamics simulation was used to provide an improved explanation of this mechanism. A unique phenomenon of brittle cracking was discovered, typically inclined at an angle of 45° to 55° to the cut surface, leading to the formation of periodic arrays of nanogrooves being filled by plastically flowing silicon during cutting. This observation is supported by the direct imaging. The simulated X-ray diffraction analysis proves that in contrast to experiments, Si-I to Si-II (beta tin) transformation during ductile-regime cutting is highly unlikely and solid-state amorphisation of silicon caused solely by the machining stress rather than the cutting temperature is the key to its brittle-ductile transition observed during the MD simulations
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
Intra-diffusion coefficients of three fluorinated alcohols, 2,2,3,3,3-pentafluoropropan-1-ol (PFP), 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFB) and 2,2,3,3,4,4,5,5,5-nonafluoropentan-1-ol (NFP) in water have been measured by the PFG–NMR spin-echo technique as a function of temperature and composition, focusing on the alcohol dilute region. For comparison, intra-diffusion coefficients of 2,2,2- trifluoroethanol (TFE) and HFB have also been measured in heavy water using the same method and conditions. As far as we know, these are the first experimental measurements of this property for these binary systems. Intra-diffusion coefficients for NFP in water and for TFE and HFB in heavy water have also been obtained by molecular dynamics simulation, complementing those for TFE, PFP and HFB reported in a previous work. The agreement between experimental and simulated results for PFP, HFB and NFP in water is reasonable, although presenting higher deviations than for the TFE/water system. From the dependence of the intra-diffusion coefficients on temperature, diffusion activation energies were estimated for all the solutes in water and heavy water.
Resumo:
This study aimed to estimate the frequency, associated factors, and molecular characterisation of Entamoeba histolytica , Entamoeba dispar, Entamoeba moshkovskii , and Entamoeba hartmanni infections. We performed a survey (n = 213 subjects) to obtain parasitological, sanitation, and sociodemographic data. Faecal samples were processed through flotation and centrifugation methods. E. histolytica, E. dispar, E. moshkovskii, and E. hartmanni were identified by nested-polymerase chain reaction (PCR). The overall prevalence of infection was 22/213 (10.3%). The infection rate among subjects who drink rainwater collected from roofs in tanks was higher than the rate in subjects who drink desalinated water pumped from wells; similarly, the infection rate among subjects who practice open defecation was significantly higher than that of subjects with latrines. Out of the 22 samples positive for morphologically indistinguishable Entamoeba species, the differentiation by PCR was successful for 21. The species distribution was as follows: 57.1% to E. dispar, 23.8% to E. histolytica, 14.3% to E. histolytica and E. dispar, and 4.8% E. dispar and E. hartmanni. These data suggest a high prevalence of asymptomatic infection by the group of morphologically indistinguishable Entamoeba histolytica/dispar/moshkovskii complex and E. hartmanni species. In this context of water scarcity, the sanitary and socioenvironmental characteristics of the region appear to favour transmission.
Resumo:
Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.
Resumo:
The cation chloride cotransporters (CCCs) represent a vital family of ion transporters, with several members implicated in significant neurological disorders. Specifically, conditions such as cerebrospinal fluid accumulation, epilepsy, Down’s syndrome, Asperger’s syndrome, and certain cancers have been attributed to various CCCs. This thesis delves into these pharmacological targets using advanced computational methodologies. I primarily employed GPU-accelerated all-atom molecular dynamics simulations, deep learning-based collective variables, enhanced sampling methods, and custom Python scripts for comprehensive simulation analyses. Our research predominantly centered on KCC1 and NKCC1 transporters. For KCC1, I examined its equilibrium dynamics in the presence/absence of an inhibitor and assessed the functional implications of different ion loading states. In contrast, our work on NKCC1 revealed its unique alternating access mechanism, termed the rocking-bundle mechanism. I identified a previously unobserved occluded state and demonstrated the transporter's potential for water permeability under specific conditions. Furthermore, I confirmed the actual water flow through its permeable states. In essence, this thesis leverages cutting-edge computational techniques to deepen our understanding of the CCCs, a family of ion transporters with profound clinical significance.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.