760 resultados para mode-locked lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geometric scaling of a Kerr-lens mode-locked Yb:YAG thin-disk oscillator yields femtosecond pulses with an average output power of 270 W. The scaled system delivers femtosecond (210-330 fs) pulses with a peak power of 38 MW. These values of average and peak power surpass the performance of any previously reported femtosecond laser oscillator operated in atmospheric air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual action of quantum-dot saturable absorber and Kerr lens mode locking of a diode-pumped Yb:KGW laser was demonstrated. The laser delivered 105 fs pulses with 2.5 W of average power and >300 kW of peak power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrated an Erbium-doped picosecond fiber laser mode locked by carbon nanotube in N-methyl-2-pryrrolidone solvent in an in-fiber micro-channel. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the generation of orthogonally polarized bright–dark pulse pair in a passively mode-locked fiber laser with a large-angle tilted fiber grating (LA-TFG). The unique polarization properties of the LA-TFG, i.e., polarization-dependent loss and polarization-mode splitting, enable dual-wavelength mode-locking operation. Besides dual-wavelength bright pulses with uniform polarization at two different wavelengths, the bright–dark pulse pair has also been achieved. It is found that the bright–dark pulse pair is formed due to the nonlinear couplings between lights with two orthogonal polarizations and two different wavelengths. Furthermore, harmonic mode-locking of bright–dark pulse pair has been observed. The obtained bright–dark pulse pair could find potential use in secure communication system. It also paves the way to manipulate the generation of dark pulse in terms of wavelength and polarization, using specially designed fiber grating for mode-locking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency channels. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated a hybrid mode-locked Erbium-doped fibre ring laser without optical isolator. Creating different losses in the cavity for counter-propagating pulses via net birefringence adjusting, the laser can operate in both unidirectional regimes with extinction over 22 dB, as well as can establish stable bidirectional generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a device, the laser is an elegant conglomerate of elementary physical theories and state-of-the-art techniques ranging from quantum mechanics, thermal and statistical physics, material growth and non-linear mathematics. The laser has been a commercial success in medicine and telecommunication while driving the development of highly optimised devices specifically designed for a plethora of uses. Due to their low-cost and large-scale predictability many aspects of modern life would not function without the lasers. However, the laser is also a window into a system that is strongly emulated by non-linear mathematical systems and are an exceptional apparatus in the development of non-linear dynamics and is often used in the teaching of non-trivial mathematics. While single-mode semiconductor lasers have been well studied, a unified comparison of single and two-mode lasers is still needed to extend the knowledge of semiconductor lasers, as well as testing the limits of current model. Secondly, this work aims to utilise the optically injected semiconductor laser as a tool so study non-linear phenomena in other fields of study, namely ’Rogue waves’ that have been previously witnessed in oceanography and are suspected as having non-linear origins. The first half of this thesis includes a reliable and fast technique to categorise the dynamical state of optically injected two mode and single mode lasers. Analysis of the experimentally obtained time-traces revealed regions of various dynamics and allowed the automatic identification of their respective stability. The impact of this method is also extended to the detection regions containing bi-stabilities. The second half of the thesis presents an investigation into the origins of Rogue Waves in single mode lasers. After confirming their existence in single mode lasers, their distribution in time and sudden appearance in the time-series is studied to justify their name. An examination is also performed into the existence of paths that make Rogue Waves possible and the impact of noise on their distribution is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials with nonlinear optical properties are much sought after for ultrafast photonic applications. Mode-locked lasers can generate ultrafast pulses using saturable absorbers[1]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs). However, narrow tuning range (tens of nm), complex fabrication and packaging limit their applications[2]. Single wall nanotubes (SWNTs) and graphene offer simpler and cost-effective solutions[1]. Broadband operation can be achieved in SWNTs using a distribution of tube diameters[1,3], or by using graphene[4-8], due to the gapless linear dispersion of Dirac electrons[8,9]. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically modeled the spatio-temporal dynamics of Dicke superradiance in GaN/InGaN heterostructure quantum wells in a ridge waveguide cavity. Model predictions envisage ultrashort pulses of intensities superior to what can be obtained in mode-locked lasers. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.