942 resultados para mean square error
Resumo:
Determination of combustion metrics for a diesel engine has the potential of providing feedback for closed-loop combustion phasing control to meet current and upcoming emission and fuel consumption regulations. This thesis focused on the estimation of combustion metrics including start of combustion (SOC), crank angle location of 50% cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude (PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism for characterization of combustion rates and more recently in-cylinder pressure has been used in series production vehicles for feedback control. However, the intrusive measurement with the in-cylinder pressure sensor is expensive and requires special mounting process and engine structure modification. As an alternative method, this work investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 diesel engine. So the transfer path between the accelerometer signal and the in-cylinder pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder pressure signal and the combustion metrics can be accurately estimated - recovered from accelerometer signals. The method and applicability for determining the transfer path is critical in utilizing an accelerometer(s) for feedback. Single-input single-output (SISO) frequency response function (FRF) is the most common transfer path model; however, it is shown here to have low robustness for varying engine operating conditions. This thesis examines mechanisms to improve the robustness of FRF for combustion metrics estimation. First, an adaptation process based on the particle swarm optimization algorithm was developed and added to the single-input single-output model. Second, a multiple-input single-output (MISO) FRF model coupled with principal component analysis and an offset compensation process was investigated and applied. Improvement of the FRF robustness was achieved based on these two approaches. Furthermore a neural network as a nonlinear model of the transfer path between the accelerometer signal and the apparent heat release rate was also investigated. Transfer path between the acoustical emissions and the in-cylinder pressure signal was also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI diesel engine. The acoustical emissions are an important factor in the powertrain development process. In this part of the research a transfer path was developed between the two and then used to predict the engine noise level with the measured in-cylinder pressure as the input. Three methods for transfer path modeling were applied and the method based on the cepstral smoothing technique led to the most accurate results with averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a linear model for engine noise level estimation was proposed with the in-cylinder pressure signal and the engine speed as components.
Resumo:
Solar radiation data is crucial for the design of energy systems based on the solar resource. Since diffuse radiation measurements are not always available in the archive data series, either due to the inexistence of measuring equipment, shading device misplacement or missing data, models to generate these data are needed. In this work, one year of hourly and daily horizontal solar global and diffuse irradiation measurements in Évora are used to establish a new relation between the diffuse radiation and the clearness index. The proposed model includes a fitting parameter, which was adjusted through a simple optimization procedure to minimize the Least Square Error as compared to measurements. A comparison against several other fitting models presented in the literature was also carried out using the Root Mean Square Error as statistical indicator, and it was found that the present model is more accurate than the previous fitting models for the diffuse radiation data in Évora.
Cloud parameter retrievals from Meteosat and their effects on the shortwave radiation at the surface
Resumo:
A method based on Spinning Enhanced Visible and Infrared Imager (SEVIRI) measured reflectance at 0.6 and 3.9 µm is used to retrieve the cloud optical thickness (COT) and cloud effective radius (re) over the Iberian Peninsula. A sensitivity analysis of simulated retrievals to the input parameters demonstrates that the cloud top height is an important factor in satellite retrievals of COT and re with uncertainties around 10% for small values of COT and re; for water clouds these uncertainties can be greater than 10% for small values of re. The uncertainties found related with geometries are around 3%. The COT and re are assessed using well-known satellite cloud products, showing that the method used characterize the cloud field with more than 80% (82%) of the absolute differences between COT (re) mean values of all clouds (water plus ice clouds) centred in the range from ±10 (±10 µm), with absolute bias lower than 2 (2 μm) for COT (re) and root mean square error values lower than 10 (8 μm) for COT (re). The cloud water path (CWP), derived from satellite retrievals, and the shortwave cloud radiative effect at the surface (CRESW) are related for high fractional sky covers (Fsc >0.8), showing that water clouds produce more negative CRESW than ice clouds. The COT retrieved was also related to the cloud modification factor, which exhibits reductions and enhancements of the surface SW radiation of the order of 80% and 30%, respectively, for COT values lower than 10. A selected case study shows, using a ground-based sky camera that some situations classified by the satellite with high Fsc values correspond to situations of broken clouds where the enhancements actually occur. For this case study, a closure between the liquid water path (LWP) obtained from the satellite retrievals and the same cloud quantity obtained from ground-based microwave measurements was performed showing a good agreement between both LWP data set values.
Resumo:
Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.
Resumo:
Isolated DC-DC converters play a significant role in fast charging and maintaining the variable output voltage for EV applications. This study aims to investigate the different Isolated DC-DC converters for onboard and offboard chargers, then, once the topology is selected, study the control techniques and, finally, achieve a real-time converter model to accomplish Hardware-In-The-Loop (HIL) results. Among the different isolated DC-DC topologies, the Dual Active Bridge (DAB) converter has the advantage of allowing bidirectional power flow, which enables operating in both Grid to Vehicle (G2V) and Vehicle to Grid (V2G) modalities. Recently, DAB has been used in the offboard chargers for high voltage applications due to SiC and GaN MOSFETs; this new technology also allows the utilization of higher switching frequencies. By empowering soft switching techniques to reduce switching losses, higher switching frequency operation is possible in DAB. There are four phase shift control techniques for the DAB converter. They are Single Phase shift, Extended Phase shift, Dual Phase shift, Triple Phase shift controls. This thesis considers two control strategies; Single-Phase, and Dual-Phase shifts, to understand the circulating currents, power losses, and output capacitor size reduction in the DAB. Hardware-In-The-Loop (HIL) experiments are carried out on both controls with high switching frequencies using the PLECS software tool and the RT box supporting the PLECS. Root Mean Square Error is also calculated for steady-state values of output voltage with different sampling frequencies in both the controls to identify the achievable sampling frequency in real-time. DSP implementation is also executed to emulate the optimized DAB converter design, and final real-time simulation results are discussed for both the Single-Phase and Dual-Phase shift controls.
Resumo:
The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.
Resumo:
This paper focused on four alternatives of analysis of experiments in square lattice as far as the estimation of variance components and some genetic parameters are concerned: 1) intra-block analysis with adjusted treatment and blocks within unadjusted repetitions; 2) lattice analysis as complete randomized blocks; 3) intrablock analysis with unadjusted treatment and blocks within adjusted repetitions; 4) lattice analysis as complete randomized blocks, by utilizing the adjusted means of treatments, obtained from the analysis with recovery of interblock information, having as mean square of the error the mean effective variance of this same analysis with recovery of inter-block information. For the four alternatives of analysis, the estimators and estimates were obtained for the variance components and heritability coefficients. The classification of material was also studied. The present study suggests that for each experiment and depending of the objectives of the analysis, one should observe which alternative of analysis is preferable, mainly in cases where a negative estimate is obtained for the variance component due to effects of blocks within adjusted repetitions.
Resumo:
The convergence speed of the standard Least Mean Square adaptive array may be degraded in mobile communication environments. Different conventional variable step size LMS algorithms were proposed to enhance the convergence speed while maintaining low steady state error. In this paper, a new variable step LMS algorithm, using the accumulated instantaneous error concept is proposed. In the proposed algorithm, the accumulated instantaneous error is used to update the step size parameter of standard LMS is varied. Simulation results show that the proposed algorithm is simpler and yields better performance than conventional variable step LMS.
Resumo:
Diabatic processes can alter Rossby wave structure; consequently errors arising from model processes propagate downstream. However, the chaotic spread of forecasts from initial condition uncertainty renders it difficult to trace back from root mean square forecast errors to model errors. Here diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby waves in winter-season forecasts from three operational centers. Tropopause sharpness adjacent to ridges decreases with forecast lead time. It depends strongly on model resolution, even though models are examined on a common grid. Rossby wave amplitude reduces with lead time up to about five days, consistent with under-representation of diabatic modification and transport of air from the lower troposphere into upper-tropospheric ridges, and with too weak humidity gradients across the tropopause. However, amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution from errors in the representation of diabatic processes.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
O objetivo foi avaliar a acurácia, precisão e robustez das estimativas da digestibilidade aparente da matéria seca obtidas utilizando-se como indicadores fibra em detergente ácido indigestível (FDAi), fibra em detergente neutro (FDNi) indigestível, lignina em detergente ácido (LDA), LDA indigestível (LDAi) e óxido crômico em comparação ao método de coleta total de fezes. Dezoito ovinos (56,5 ± 4,6 kg PV) foram designados aleatoriamente a dietas compostas de 25, 50 ou 75% de concentrado e feno de Coast cross por 25 dias. As fezes foram coletadas por cinco dias para determinação da digestibilidade aparente da MS. As amostras de alimentos e fezes foram incubadas no rúmen de três bovinos por 144 horas, para obtenção das frações indigestíveis. Óxido crômico foi administrado a 4,0 g/animal/dia. A acurácia foi avaliada pela comparação do viés médio (DAMS predito - DAMS observado) entre os indicadores; a precisão, por meio da raiz quadrada do erro de predição e do erro residual; e a robustez, pelo estudo da regressão entre o viés e o consumo de matéria seca, o nível de concentrado e o peso vivo. A recuperação fecal e a acurácia das estimativas da digestibilidade aparente da MS foram maiores para FDAi, seguida pela FDNi, LDAi, pelo óxido crômico e depois pela lignina em detergente ácido. O viés linear foi significativo apenas para FDAi, FDNi e LDAi. O uso de óxido crômico permitiu estimativas mais precisas da digestibilidade aparente da MS. Todos os indicadores foram robustos quanto à variação no consumo de matéria seca e apenas LDAi e óxido crômico foram robustos quanto aos níveis de concentrado na dieta. O óxido crômico não foi robusto quando houve variação no peso vivo animal. Assim, a FDAi é o indicador mais recomendado na estimativa da digestibilidade aparente da MS em ovinos quando o objetivo é comparar aos dados da literatura, enquanto o óxido crômico é mais recomendado quando o objetivo é comparar tratamentos dentro de um mesmo experimento.
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
The application of airborne laser scanning (ALS) technologies in forest inventories has shown great potential to improve the efficiency of forest planning activities. Precise estimates, fast assessment and relatively low complexity can explain the good results in terms of efficiency. The evolution of GPS and inertial measurement technologies, as well as the observed lower assessment costs when these technologies are applied to large scale studies, can explain the increasing dissemination of ALS technologies. The observed good quality of results can be expressed by estimates of volumes and basal area with estimated error below the level of 8.4%, depending on the size of sampled area, the quantity of laser pulses per square meter and the number of control plots. This paper analyzes the potential of an ALS assessment to produce certain forest inventory statistics in plantations of cloned Eucalyptus spp with precision equal of superior to conventional methods. The statistics of interest in this case were: volume, basal area, mean height and dominant trees mean height. The ALS flight for data assessment covered two strips of approximately 2 by 20 Km, in which clouds of points were sampled in circular plots with a radius of 13 m. Plots were sampled in different parts of the strips to cover different stand ages. The clouds of points generated by the ALS assessment: overall height mean, standard error, five percentiles (height under which we can find 10%, 30%, 50%,70% and 90% of the ALS points above ground level in the cloud), and density of points above ground level in each percentile were calculated. The ALS statistics were used in regression models to estimate mean diameter, mean height, mean height of dominant trees, basal area and volume. Conventional forest inventory sample plots provided real data. For volume, an exploratory assessment involving different combinations of ALS statistics allowed for the definition of the most promising relationships and fitting tests based on well known forest biometric models. The models based on ALS statistics that produced the best results involved: the 30% percentile to estimate mean diameter (R(2)=0,88 and MQE%=0,0004); the 10% and 90% percentiles to estimate mean height (R(2)=0,94 and MQE%=0,0003); the 90% percentile to estimate dominant height (R(2)=0,96 and MQE%=0,0003); the 10% percentile and mean height of ALS points to estimate basal area (R(2)=0,92 and MQE%=0,0016); and, to estimate volume, age and the 30% and 90% percentiles (R(2)=0,95 MQE%=0,002). Among the tested forest biometric models, the best fits were provided by the modified Schumacher using age and the 90% percentile, modified Clutter using age, mean height of ALS points and the 70% percentile, and modified Buckman using age, mean height of ALS points and the 10% percentile.
Resumo:
The purpose of the present study was to evaluate the intra and interday reliability of surface electromyographic amplitude values of the scapular girdle muscles and upper limbs during 3 isometric closed kinetic chain exercises, involving upper limbs with the fixed distal segment extremity on stable base of support and on a Swiss ball (relatively unstable). Twenty healthy adults performed the exercises push-up, bench-press and wall-press with different effort levels (80% and 100% maximal load). Subjects performed three maximal voluntary contractions (MVC) in muscular testing position of each muscle to obtain a reference value for root mean square (RMS) normalization. Individuals were instructed to randomly perform three isometric contraction series, in which each exercise lasted 6 s with a 2-min resting-period between series and exercises. Intra and interday reliabilities were calculated through the intraclass correlation coefficient (ICC 2.1), standard error of the measurement (SEM). Results indicated an excellent intraday reliability of electromyographic amplitude values (ICC >= 0.75). The interday reliability of normalized RMS values ranged between good and excellent (ICC 0.52-0.98). Finally, it is suggested that the reliability of normalized electromyographic amplitude values of the analyzed muscles present better values during exercises on a stable surface. However, load levels used during the exercises do not seem to have any influence on variability levels, possibly because the loads were quite similar. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The thin-layer drying behaviour of bananas in a beat pump dehumidifier dryer was examined. Four pre-treatments (blanching, chilling, freezing and combined blanching and freezing) were applied to the bananas, which were dried at 50 degreesC with an air velocity of 3.1 m s(-1) and with the relative humidity of the inlet air of 10-35%. Three drying models, the simple model, the two-term exponential model and the Page model were examined. All models were evaluated using three statistical measures, correlation coefficient, root means square error, and mean absolute percent error. Moisture diffusivity was calculated based on the diffusion equation for an infinite cylindrical shape using the slope method. The rate of drying was higher for the pre-treatments involving freezing. The sample which was blanched only did not show any improvement in drying rate. In fact, a longer drying time resulted due to water absorption during blanching. There was no change in the rate for the chilled sample compared with the control. While all models closely fitted the drying data, the simple model showed greatest deviation from the experimental results. The two-term exponential model was found to be the best model for describing the drying curves of bananas because its parameters represent better the physical characteristics of the drying process. Moisture diffusivities of bananas were in the range 4.3-13.2 x 10(-10) m(2)s(-1). (C) 2002 Published by Elsevier Science Ltd.