947 resultados para materials growth
Resumo:
An alternative method for seeding catalyst nanoparticles for carbon nanotubes and nanowires growth is presented. Ni nanoparticles are formed inside a 450 nm SiO2 film on (100) Si wafers through the implantation of Ni ions at fluences of 7.5×1015 and 1.7×1016 ions.cm-2 and post-annealing treatments at 700, 900 and 1100°C. After exposed to the surface by HF dip etching, the Ni nanoparticles are used as catalyst for the growth of vertically aligned carbon nanotubes by direct current plasma enhanced chemical vapor deposition. © 2007 Materials Research Society.
Resumo:
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.
Resumo:
Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.
Resumo:
The seeded infiltration and growth (SIG) technique offers near-net shape processing of bulk superconductors with significant improvement in reduced Y2BaCuO5 (Y-211) inclusion size, reduced shrinkage, reduced porosity and improved current density compared to samples fabricated by top seeded melt growth (TSMG). Y2Ba4CuMOy phases where M=Nb, Mo, W, Ta, etc., have been shown to form nano-scale inclusions in the YBa2Cu3Oy (Y-123) phase matrix and to contribute to enhanced magnetic flux pinning in these materials. In this paper, we describe the introduction of Y2Ba 4CuWOy nano-scale inclusions into bulk superconductors processed by the seeded infiltration growth process. Critical current density, Jc, in excess of 105 A/cm2 at 77 K in self-field is observed for samples containing Y2Ba 4CuWOy. © 2011 IEEE.