989 resultados para manufacturing strategy
Resumo:
Pultruded products are being targeted by a growing demand due to its excellent mechanical properties and low chemical reactivity, ensuring a low level of maintenance operations and allowing an easier assembly operation process than equivalent steel bars. In order to improve the mechanical drawing process and solve some acoustic and thermal insulation problems, pultruded pipes of glass fibre reinforced plastics (GFRF) can be filled with special products that increase their performance regarding the issues previously referred. The great challenge of this work was drawing a new equipment able to produce pultruded pipes filled with cork or polymeric pre-shaped bars as a continuous process. The project was carried out successfully and the new equipment was built and integrated in the pultrusion equipment already existing, allowing to obtain news products with higher added-value in the market, covering some needs previously identified in the field of civil construction.
Resumo:
In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
Risk assessment is one of the main pillars of the framework directive and other directives in respect of health and safety. It is also the basis of an effective management of safety and health as it is essential to reduce work-related accidents and occupational diseases. To survey the hazards eventually present in the workplaces the usual procedures are i) gathering information about tasks/activities, employees, equipment, legislation and standards; ii) observation of the tasks and; iii) quantification of respective risks through the most adequate risk assessment among the methodologies available. From this preliminary evaluation of a welding plant and, from the different measurable parameters, noise was considered the most critical. This paper focus not only the usual way of risk assessment for noise but also another approach that may allow us to identify the technique with which a weld is being performed.
Resumo:
Undesirable void formation during the injection phase of the liquid composite molding process can be understood as a consequence of the non-uniformity of the flow front progression, caused by the dual porosity of the fiber perform. Therefore the best examination of the void formation physics can be provided by a mesolevel analysis, where the characteristic dimension is given by the fiber tow diameter. In mesolevel analysis, liquid impregnation along two different scales; inside fiber tows and within the spaces between them; must be considered and the coupling between these flow regimes must be addressed. In such case, it is extremely important to account correctly for the surface tension effects, which can be modeled as capillary pressure applied at the flow front. When continues Galerkin method is used, exploiting elements with velocity components and pressure as nodal variables, strong numerical implementation of such boundary conditions leads to ill-posing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. This article presents a numerical procedure, which was formulated and implemented in the existing Free Boundary Program in order to significantly reduce this error.
Resumo:
Undesirable void formation during the injection phase of the liquid composite moulding process can be understood as a consequence of the non-uniformity of the flow front progression, caused by the dual porosity of the fibre perform. Therefore the best examination of the void formation physics can be provided by a mesolevel analysis, where the characteristic dimension is given by the fibre tow diameter. In mesolevel analysis, liquid impregnation along two different scales; inside fibre tows and within the open spaces between them; must be considered and the coupling between these flow regimes must be addressed. In such case, it is extremely important to account correctly for the surface tension effects, which can be modelled as capillary pressure applied at the flow front. Numerical implementation of such boundary conditions leads to ill-posing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. This contribution presents a numerical procedure, which was formulated and implemented in the existing Free Boundary Program in order to significantly reduce this error.
Resumo:
EEZ International, Summer 2003, p. 43-47
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
In slaughterhouses, the biological risk is present not only from the direct or indirect contact with animal matter, but also from the exposure to bioaerosols. Fungal contamination was already reported from the floors and walls of slaughterhouses. This study intends to assess fungal contamination by cultural and molecular methods in poultry, swine/bovine and large animal slaughterhouses. Air samples were collected through an impaction method, while surface samples were collected by the swabbing method and subjected to further macro- and micro-scopic observations. In addition, we collected air samples using the impinger method in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely A. flavus, A. fumigatus and A. ochraceus complexes. Poultry and swine/bovine slaughterhouses presented each two sampling sites that surpass the guideline of 150 CFU/m3. Scopulariopsis candida was the most frequently isolated (59.5%) in poultry slaughterhouse air; Cladosporium sp. (45.7%) in the swine/bovine slaughterhouse; and Penicillium sp. (80.8%) in the large animal slaughterhouse. Molecular tools successfully amplified DNA from the A. fumigatus complex in six sampling sites where the presence of this fungal species was not identified by conventional methods. This study besides suggesting the indicators that are representative of harmful fungal contamination, also indicates a strategy as a protocol to ensure a proper characterization of fungal occupational exposure.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.
Resumo:
Apresentação realizada no OH&S Forum 2011 - International Forum on Occupational Health and Safety: Policies, profiles and services, na Finlândia de, 20 a 22 Junho de 2011.
Resumo:
Apresentação realizada no 9th European Sociological Association Conference, em Lisboa em 2009
Resumo:
BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.
Resumo:
A fourteen year schistosomiasis control program in Peri-Peri (Capim Branco, MG) reduced prevalence from 43.5 to 4.4%; incidence from 19.0 to 2.9%, the geometric mean of the number of eggs from 281 to 87 and the level of the hepatoesplenic form cases from 5.9 to 0.0%. In 1991, three years after the interruption of the program, the prevalence had risen to 19.6%. The district consists of Barbosa (a rural area) and Peri-Peri itself (an urban area). In 1991, the prevalence in the two areas was 28.4% and 16.0% respectively. A multivariate analysis of risk factors for schistosomiasis indicated the domestic agricultural activity with population attributive risk (PAR) of 29.82%, the distance (< 10 m) from home to water source (PAR = 25.93%) and weekly fishing (PAR = 17.21%) as being responsible for infections in the rural area. The recommended control measures for this area are non-manual irrigation and removal of homes to more than ten meters from irrigation ditches. In the urban area, it was observed that swimming at weekly intervals (PAR = 20.71%), daily domestic agricultural activity (PAR = 4.07%) and the absence of drinking water in the home (PAR=4.29%) were responsible for infections. Thus, in the urban area the recommended control measures are the substitution of manual irrigation with an irrigation method that avoids contact with water, the creation of leisure options of the population and the provision of a domestic water supply. The authors call attention to the need for the efficacy of multivariate analysis of risk factors to be evaluated for schistosomiasis prior to its large scale use as a indicator of the control measures to be implemented.
Resumo:
O trabalho presente nesta dissertação incidiu sobre a aplicação das metodologias Lean no âmbito do processo produtivo de uma empresa metalomecânica de moldes – SIMOLDES AÇOS, SA. No atual enquadramento, com os mercados nacionais e internacionais debaixo de feroz competição, as empresas são obrigadas a estudar métodos e técnicas que permitam eliminar desperdícios, reduzir custos e tempos de produção, ao mesmo tempo que são exigidos maiores níveis de qualidade dos produtos fabricados com vista ao aumento da competitividade. No decorrer do trabalho desta dissertação de mestrado foi realizada uma análise abrangente do estado atual do sector de atividade do processo produtivo na empresa SIMOLDES AÇOS SA, o que permitiu identificar as áreas e os pontos a intervir e desenhar as soluções de melhoria na atividade do processo produtivo. Na fase concludente do trabalho foram implementadas algumas dessas propostas de melhoria, ao passo que outras ficaram programadas para futura implementação. Na base do trabalho desenvolvido esteve a metodologia Lean, que apresenta um papel relevante na implementação de uma abordagem integrada da função do processo produtivo na aquisição dos objetivos da produção. O presente projeto baseou a sua estratégia de implementação na aplicação da ferramenta do 5S. Esta ferramenta visa a redução de desperdícios, da melhoria do desempenho dos processos e da plena integração de todos os colaboradores no processo de fabrico. Com a implementação das melhorias propostas, foram observadas melhorias significativas no fluxo das atividades do processo produtivo.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia e Gestão Industrial