414 resultados para manned submersible


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito Deep (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ~0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the Hess Deep tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not observed. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the observed lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 * 10**6 kg/m**2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the crust. Because this leaching lowers the fluid 87Sr/86Sr without changing the rock 87Sr/86Sr, these mass balance models must underestimate the time-integrated fluid flux. Additionally, these values do not account for fluid flow that is channelized within the crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, profiling floats, which form the basis of the successful international Argo observatory, are also being considered as platforms for marine biogeochemical research. This study showcases the utility of floats as a novel tool for combined gas measurements of CO2 partial pressure (pCO2) and O2. These float prototypes were equipped with a small-sized and submersible pCO2 sensor and an optode O2 sensor for highresolution measurements in the surface ocean layer. Four consecutive deployments were carried out during November 2010 and June 2011 near the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic. The profiling float performed upcasts every 31 h while measuring pCO2, O2, salinity, temperature, and hydrostatic pressure in the upper 200 m of the water column. To maintain accuracy, regular pCO2 sensor zeroings at depth and surface, as well as optode measurements in air, were performed for each profile. Through the application of data processing procedures (e.g., time-lag correction), accuracies of floatborne pCO2 measurements were greatly improved (10-15 µatm for the water column and 5 µatm for surface measurements). O2 measurements yielded an accuracy of 2 µmol/kg. First results of this pilot study show the possibility of using profiling floats as a platform for detailed and unattended observations of the marine carbon and oxygen cycle dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical zooplankton distribution at the northeastern periphery of the North Atlantic subtropical gyre was studied with the use of 113/140 BR nets and Mir manned submersibles. Vertical distribution of selected dominant taxonomic, ecological, and trophic groups was considered. Results were compared with data obtained at the same location in 2001 that allowed to estimate interannual variability of the planktonic community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mariana arc-trench system, the easternmost of a series of backarc basins and intervening remnant arcs that form the eastern edge of the Philippine Sea Plate, is a well-known example of an intraoceanic convergence zone. Its evolution has been studied by numerous investigators over nearly two decades (e.g., Kang, 1971; Uyeda and Kanamori, 1979; LaTraille and Hussong, 1980; Fryer and Hussong, 1981; Mrosowski et al., 1982; Hussong and Uyeda, 1981; Bloomer and Hawkins, 1983; Karig and Ranken, 1983; McCabe and Uyeda, 1983; Hsui and Youngquist, 1985; Fryer and Fryer, 1987; Johnson and Fryer, 1988; Johnson and Fryer, 1989; Johnson et al., 1991). The Mariana forearc has undergone extensive vertical uplift and subsidence in response to seamount collision, to tensional and rotational fracturing associated with adjustments to plate subduction, and to changes in the configuration of the arc (Hussong and Uyeda, 1981; Fryer et al., 1985). Serpentine seamounts, up to 2500 m high and 30 km in diameter, occur in a broad zone along the outer-arc high (Fryer et al., 1985; Fryer and Fryer, 1987). These seamounts may be horsts of serpentinized ultramafic rocks or may have been formed by the extrusion of serpentine muds. Conical Seamount, one of these serpentine seamounts, is located within this broad zone of forearc seamounts, about 80 km from the trench axis, at about 19°30'N. The seamount is approximately 20 km in diameter and rises 1500 m above the surrounding seafloor. Alvin submersible, R/V Sonne bottom photography, seismic reflection, and SeaMARC II studies indicate that the surface of this seamount is composed of unconsolidated serpentine muds that contain clasts of serpentinized ultramafic and metamorphosed mafic rocks, and authigenic carbonate and silicate minerals (Saboda et al., 1987; Haggerty, 1987; Fryer et al., 1990; Saboda, 1991). During Leg 125, three sites were drilled (two flank sites and one summit site) on Conical Seamount to investigate the origin and evolution of the seamount. Site 778 (19°29.93'N, 146°39.94'E) is located in the midflank region of the southern quadrant of Conical Seamount at a depth of 3913.7 meters below sea level (mbsl) (Fig. 2). This site is located in the center of a major region of serpentine flows (Fryer et al., 1985, 1990). Site 779 (19°30.75'N, 146°41.75'E), about 3.5 km northeast of Site 778, is located approximately in the midflank region of the southeast quadrant of Conical Seamount, at a depth of 3947.2 mbsl. This area is mantled by a pelagic sediment cover, overlying exposures of unconsolidated serpentine muds that contain serpentinized clasts of mafic and ultramafic rocks (Fryer et al., 1985, 1990). Site 780 (19°32.5'N, 146°39.2'E) is located on the western side of Conical Seamount near the summit, at a depth of 3083.4 mbsl. This area is only partly sediment covered and lies near active venting fields where chimney structures are forming (Fryer et al., 1990).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock material sampled from the Mir manned deep-sea submersibles and by dradges, grabs, and sediment cores over a vast area of the North Atlantic was analyzed to show that this material is of continental origin, unlike original rocks of the ocean floor. It is proved to be related to iceberg rafting during Quaternary glaciations. Independent data on distribution and composition of sandy and silty grains in sediment cores also support this relation to the recent glaciation. New criteria for identification of iceberg rock matter in pelagic sediments are presented on the base of analysis of all available data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barite ores with admixture of sphalerite that occur in the Atlantis-II Deep are indicated by their geological position, structure, and mineral and chemical characteristics and by isotope composition of sulfur and oxygen in them to be of hydrothermal origin. They were produced close to an orifice of an intermittent hydrothermal vent by chemogenic precipitation of barite onto cooled basalt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamic crystallization study was undertaken to provide a framework for linking the textural variations observed in the Hole 648B lavas with the size and morphology of cooling units inferred from drilling and submersible observation. The textures produced in cooling rate experiments carried out using a Serocki lava (ALV-1690-20) are comparable to the groundmass textural characteristics of lavas from Serocki volcano. The results of the dynamic crystallization study provide a quantitative link between texture, cooling rate, and eruption temperature. The maximum half-width of cooling units estimated from textural characteristics is on the order of 3 m, a value consistent with constraints from drilling and submersible observation. Textural characteristics indicate that the temperature from which cooling began was slightly above the liquidus. The relation between cooling rate and texture are also tested on a drill core sample of basalt of similar composition from a 9-m-thick flow in DSDP Hole 396B.