851 resultados para learning network
Resumo:
There are been a resurgence of interest in the neural networks field in recent years, provoked in part by the discovery of the properties of multi-layer networks. This interest has in turn raised questions about the possibility of making neural network behaviour more adaptive by automating some of the processes involved. Prior to these particular questions, the process of determining the parameters and network architecture required to solve a given problem had been a time consuming activity. A number of researchers have attempted to address these issues by automating these processes, concentrating in particular on the dynamic selection of an appropriate network architecture.The work presented here specifically explores the area of automatic architecture selection; it focuses upon the design and implementation of a dynamic algorithm based on the Back-Propagation learning algorithm. The algorithm constructs a single hidden layer as the learning process proceeds using individual pattern error as the basis of unit insertion. This algorithm is applied to several problems of differing type and complexity and is found to produce near minimal architectures that are shown to have a high level of generalisation ability.
Resumo:
The introduction of Regional Development Agencies (RDAs) in the English regions in 1999 presented a new set of collaborative challenges to existing local institutions. The key objectives of the new policy impetus emphasise increased joined-up thinking and holistic regional governance. Partners were enjoined to promote cross-sector collaboration and present a coherent regional voice. This study aims to evaluate the impact of an RDA on the partnership infrastructure of the West Midlands. The RDA network incorporates a wide spectrum of interest and organisations with diverse collaborative histories, competencies and capacities. The study has followed partners through the process over an eighteen-month period and has sought to explore the complexities and tensions of partnership working 'on the ground'. A strong qualitative methodology has been employed in generating 'thick descriptions' of the policy domain. The research has probed beyond the 'rhetoric' of partnerships and explores the sensitivities of the collaboration process. A number of theoretical frameworks have been employed, including policy network theory; partnership and collaboration theory; organisational learning; and trust and social capital. The structural components of the West Midlands RDA network are explored, including the structural configuration of the network and stocks of human and social capital assets. These combine to form the asset base of the network. Three sets of network behaviours are then explored, namely, strategy, the management of perceptions, and learning. The thesis explores how the combination of assets and behaviours affect, and in turn are affected by, each other. The findings contribute to the growing body of knowledge and understanding surrounding policy networks and collaborative governance.
Resumo:
This thesis proposes a novel graphical model for inference called the Affinity Network,which displays the closeness between pairs of variables and is an alternative to Bayesian Networks and Dependency Networks. The Affinity Network shares some similarities with Bayesian Networks and Dependency Networks but avoids their heuristic and stochastic graph construction algorithms by using a message passing scheme. A comparison with the above two instances of graphical models is given for sparse discrete and continuous medical data and data taken from the UCI machine learning repository. The experimental study reveals that the Affinity Network graphs tend to be more accurate on the basis of an exhaustive search with the small datasets. Moreover, the graph construction algorithm is faster than the other two methods with huge datasets. The Affinity Network is also applied to data produced by a synchronised system. A detailed analysis and numerical investigation into this dynamical system is provided and it is shown that the Affinity Network can be used to characterise its emergent behaviour even in the presence of noise.
Resumo:
The paper outlines a perspective on learning how to share knowledge in the context of inter-firm networks and highlights the essential role of participation in collaborative activities. This perspective suggests that knowledge sharing is not something achieved through the simple transfer of resources, but rather is an ongoing social accomplishment in which network firms constitute and re-constitute knowledge while engaging in collaborative activities. Empirical support for this view is offered by an in-depth and multiyear study of the development of collaborative relationships between a leading racing car manufacturer and its suppliers in the Italian motorsport industry. The study shows that knowledge is generated over time through the instigation of three knowledge sharing processes: the promotion of a culture of working together, co-location and the use of resident engineers, and shared education and training.
Resumo:
The authors propose a new approach to discourse analysis which is based on meta data from social networking behavior of learners who are submerged in a socially constructivist e-learning environment. It is shown that traditional data modeling techniques can be combined with social network analysis - an approach that promises to yield new insights into the largely uncharted domain of network-based discourse analysis. The chapter is treated as a non-technical introduction and is illustrated with real examples, visual representations, and empirical findings. Within the setting of a constructivist statistics course, the chapter provides an illustration of what network-based discourse analysis is about (mainly from a methodological point of view), how it is implemented in practice, and why it is relevant for researchers and educators.
Resumo:
This research explored how a more student-directed learning design can support the creation of togetherness and belonging in a community of distance learners in formal higher education. Postgraduate students in a New Zealand School of Education experienced two different learning tasks as part of their online distance learning studies. The tasks centered around two online asynchronous discussions each for the same period of time and with the same group of students, but following two different learning design principles. All messages were analyzed using a twostep analysis process, content analysis and social network analysis. Although the findings showed a balance of power between the tutor and the students in the first high e-moderated activity, a better pattern of group interaction and community feeling was found in the low e-moderated activity. The paper will discuss the findings in terms of the implications for learning design and the role of the tutor.
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via a crank shaft. However, to ensure efficient and reliable operation under all conditions, it is essential that motor current of a linear compressor follows a sinusoidal current command with a frequency which matches the system resonant frequency. The design of a high-performance current controller for linear compressor drive presents a challenge since the system is highly nonlinear, and an effective solution must be low cost. In this paper, a learning feed-forward current controller for the linear compressors is proposed. It comprises a conventional feedback proportional-integral controller and a feed-forward B-spline neural network (BSNN). The feed-forward BSNN is trained online and in real time in order to minimize the current tracking error. Extensive simulation and experiment results with a prototype linear compressor show that the proposed current controller exhibits high steady state and transient performance. © 2009 IEEE.
Resumo:
This paper models how the structure and function of a network of firms affects their aggregate innovativeness. Each firm has the potential to innovate, either from in-house R&D or from innovation spillovers from neighboring firms. The nature of innovation spillovers depends upon network density, the commonality of knowledge between firms, and the learning capability of firms. Innovation spillovers are modelled in detail using ideas from organizational theory. Two main results emerge: (i) the marginal effect on innovativeness of spillover intensity is non-monotonic, and (ii) network density can affect innovativeness but only when there are heterogeneous firms.
Resumo:
Recent years have seen innovations in the logistics and freight transport industry in relation to Information and communication technologies (ICT) diffusion. The implementation of such technologies by third party logistics providers (3PLs) allows the real-time exchange of information between supply chain partners, thereby improving planning capability and customer service. However, the logistics and freight transport industry is lagging somewhat behind other sectors in ICT diffusion. In relation to the latter point, it is important to note that the dissemination of ICT in logistics and supply chain management (SCM) is shifting the 3PL industry to an increasingly knowledge-intensive approach. In this process, the role of learning becomes more central and an assessment of the impact of future ICT learning needs for the logistics providers is a strategic imperative. The aim of this paper is to assess the impact of ICT on logistics and freight transport industry in Italy and Ireland, and to identify learning needs for more effective ICT adoption in 3PLs.
Resumo:
In this paper we study the self-organising behaviour of smart camera networks which use market-based handover of object tracking responsibilities to achieve an efficient allocation of objects to cameras. Specifically, we compare previously known homogeneous configurations, when all cameras use the same marketing strategy, with heterogeneous configurations, when each camera makes use of its own, possibly different marketing strategy. Our first contribution is to establish that such heterogeneity of marketing strategies can lead to system wide outcomes which are Pareto superior when compared to those possible in homogeneous configurations. However, since the particular configuration required to lead to Pareto efficiency in a given scenario will not be known in advance, our second contribution is to show how online learning of marketing strategies at the individual camera level can lead to high performing heterogeneous configurations from the system point of view, extending the Pareto front when compared to the homogeneous case. Our third contribution is to show that in many cases, the dynamic behaviour resulting from online learning leads to global outcomes which extend the Pareto front even when compared to static heterogeneous configurations. Our evaluation considers results obtained from an open source simulation package as well as data from a network of real cameras. © 2013 IEEE.
Resumo:
General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.
Resumo:
This paper presents an adaptable InfoStation-based multi-agent system facilitating the mobile eLearning (mLearning) service provision within a University Campus. A horizontal view of the network architecture is presented. Main communications scenarios are considered by describing the detailed interaction of the system entities involved in the mLearning service provision. The mTest service is explored as a practical example. System implementation approaches are also considered.
Resumo:
questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.
Resumo:
In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.