983 resultados para iodinated contrast agents
Resumo:
Eight Cylindropuntia species have naturalised in Australia and pose serious economic, environmental and social impacts. Two biotypes of Dactylopius tomentosus have been used as bio-control agents to control different Cylindropuntia species. The host range of four additional biotypes of Dactylopius tomentosus from southern USA was investigated. Feeding and development were restricted to the genus Cylindropuntia. However, they showed differences in specificity within this genus and some biotypes discriminated between the provenances of C. rosea and C. tunicata. Efficacy trials were conducted to determine whether populations of each biotype could be sustained on the naturalised Cylindropuntia species and if these populations could retard the growth or kill these plants. The acanthocarpa biotype offers potential control of C. rosea (Lorne Station), while the cylindropuntia sp. biotype shows great potential to control C. rosea (Grawin). The cylindropuntia sp. biotype also had a high impact on C. kleiniae and C. imbricata, and a moderate impact on C. leptocaulis and C. prolifera. The acanthocarpa X echinocarpa biotype had its greatest impact on C. tunicata (Grawin), killing this plant in 18 weeks. A fourth biotype, leptocaulis, was damaging to some species, but was less effective than the other biotypes. Cylindropuntia spinosior is the only naturalised species in Australia where no effective biocontrol agent has been found.
Resumo:
Three-dimensional QSAR studies for N-4-arylacryloylpiperazin-1-yl-phenyl-oxazolidinones were conducted using TSAR 3.3. The in vitro activities (MICs) of the compounds against Staphylococcus aureus ATCC 25923 exhibited a strong correlation with the prediction made by the model developed in the present study.
Resumo:
This demonstration highlights the applications of our research work i.e. second generation (Scalable Fault Tolerant Agent Grooming Environment - SAGE) Multi Agent System, Integration of Software Agents and Grid Computing and Autonomous Agent Architecture in the Agent Platform. It is a conference planner application that uses collaborative effort of services deployed geographically wide in different technologies i.e. Software Agents, Grid computing and Web services to perform useful tasks as required. Copyright 2005 ACM.
Resumo:
This paper highlights the Hybrid agent construction model being developed that allows the description and development of autonomous agents in SAGE (Scalable, fault Tolerant Agent Grooming Environment) - a second generation FIPA-Compliant Multi-Agent system. We aim to provide the programmer with a generic and well defined agent architecture enabling the development of sophisticated agents on SAGE, possessing the desired properties of autonomous agents - reactivity, pro-activity, social ability and knowledge based reasoning. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
In the present study a series of 4-isopropylthiazole-2-carbohydrazide analogs, derived clubbed oxadiazole-thiazole and triazole-thiazole derivatives have been synthesized and characterized by IR, H-1 NMR, C-13 NMR, elemental and mass spectral analyses. The synthesized compounds were evaluated for their preliminary in vitro antibacterial, antifungal and antitubercular activity against Mycobacterium tuberculosis H(37)Rv strain by broth dilution assay method. The synthesized compounds 7a, 7b, 7d and 4 showed an antitubercular efficacy considerably greater than that of the parent 4-isopropyl-1,3-thiazole-2-carbohydrazide 1, suggesting that the substituted 4-isopropylthiazole-2-carbohydrazide moiety plays an important role in enhancing the antitubercular properties of this class of compounds. Compounds 2c, 3, 4, 6d, 7a and 7b exhibited good or moderate antibacterial and antifungal activity. Compounds 4 and 7b showed appreciable cytotoxicity at a concentration of 250 mu M.
Resumo:
High luminance contrast between windows and surrounding surfaces could cause discomfort glare, which could reduce office workers’ productivity. It might also increase energy usage of buildings due to occupants’ interventions in lighting conditions to improve indoor visual quality. It is presumed that increasing the luminance of the areas surrounding the windows using a supplementary system, such Light Emitting Diodes (LEDs), could reduce discomfort glare. This paper reports on the results of a pilot study in a conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system could reduce the luminance contrast on the window wall from values in the order of 24:1 to 12:1. The results suggest that this reduction could significantly reduce discomfort glare from windows, as well as diminishing the likelihood of users’ intention to turn on the ceiling lights and/ or to move the blind down.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.
Resumo:
As a key component of the ocular surface required for vision, the cornea has been extensively studied as a site for cell and tissue-based therapies. Historically, these treatments have consisted of donor corneal tissue transplants, but cultivated epithelial autografts have become established over the last 15 years as a routine treatment for ocular surface disease. Ultimately, these treatments are performed with the intention of restoring corneal transparency and a smooth ocular surface. The degree of success, however, is often dependent upon the inherent level of corneal inflammation at time of treatment. In this regard, the anti-inflammatory and immuno-modulatory properties of mesenchymal stromal cells (MSC) have drawn attention to these cells as potential therapeutic agents for corneal repair. The origins for MSC-based therapies are founded in part on observations of the recruitment of endogenous bone marrow-derived cells to injured corneas, however, an increasing quantity of data is emerging for MSC administered following their isolation and ex vivo expansion from a variety of tissues including bone marrow, adipose tissue, umbilical cord and dental pulp. In brief, evidence has emerged of cultured MSC, or their secreted products, having a positive impact on corneal wound healing and retention of corneal allografts in animal models. Optimal dosage, route of administration and timing of treatment, however, all remain active areas of investigation. Intriguingly, amidst these studies, have emerged reports of MSC transdifferentiation into corneal cells. Clearest evidence has been obtained with respect to expression of markers associated with the phenotype of corneal stromal cells. In contrast, the evidence for MSC conversion to corneal epithelial cell types remains inconclusive. In any case, the conversion of MSC into corneal cells seems unlikely to be an essential requirement for their clinical use. This field of research has recently become more complicated by reports of MSC-like properties for cultures established from the peripheral corneal stroma (limbal stroma). The relationship and relative value of corneal-MSC compared to traditional sources of MSC such as bone marrow are at present unclear. This chapter is divided into four main parts. After providing a concise overview of corneal structure and function, we will highlight the types of corneal diseases that are likely to benefit from the anti-inflammatory and immuno-modulatory properties of MSC. We will subsequently summarize the evidence supporting the case for MSC-based therapies in the treatment of corneal diseases. In the third section we will review the literature concerning the keratogenic potential of MSC. Finally, we will review the more recent literature indicating the presence of MSC-like cells derived from corneal tissue.
Resumo:
Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
The current study sought to identify the impact of whether teammates in a cooperative videogame were controlled by other humans (avatars) or by the game (agents). The impact on player experience was explored through both subjective questionnaire measures and brain wave activity measurement (electroencephalography). Play with human teammates was associated with a greater sense of relatedness, but less competence and flow than play with other computer-controlled teammates. In terms of brain activity, play with human teammates was associated with greater activity in the alpha, theta and beta power bands than play with computer-controlled teammates. Overall, the results suggest that play with human teammates involves greater cognitive activity in terms of 'mentalising' than play with computer-controlled teammates. Additionally, the associations between subjective measures of player experience and brain activity are described. Limitations of the current study are identified and key directions for future research are discussed.
Resumo:
A number of new triclosan-conjugated analogs bearing biodegradable ester linkage have been synthesized, characterized and evaluated for their antimalarial and antibacterial activities. Many of these compounds exhibit good inhibition against Plasmodium falciparum and Escherichia coli. Among them tertiary amine containing triclosan-conjugated prodrug (5) inhibited both P. falciparum (IC50; 0.62 μM) and E. coli (IC50; 0.26 μM) at lower concentrations as compared to triclosan. Owing to the presence of a cleavable ester moiety, these new prodrugs are hydrolyzed under physiological conditions and parent molecule, triclosan, is released. Further, introduction of tertiary/quaternary functionality increases their cellular uptake. These properties impart them with higher potency to their antimalarial as well as antibacterial activities. The best compound among them 5 shows close to four-fold enhanced activities against P. falciparum and E. coli cultures as compared to triclosan.
Resumo:
Mr Mehdi Amirkhani presented his research and case studies on improved lighting design in commercial spaces through daylight control and innovative lighting placement. This technical meeting was organised by IESANZ Queensland Chapter on April 7, 2016.
Resumo:
Differentiation of various types of soft tissues is of high importance in medical imaging, because changes in soft tissue structure are often associated with pathologies, such as cancer. However, the densities of different soft tissues may be very similar, making it difficult to distinguish them in absorption images. This is especially true when the consideration of patient dose limits the available signal-to-noise ratio. Refraction is more sensitive than absorption to changes in the density, and small angle x-ray scattering on the other hand contains information about the macromolecular structure of the tissues. Both of these can be used as potential sources of contrast when soft tissues are imaged, but little is known about the visibility of the signals in realistic imaging situations. In this work the visibility of small-angle scattering and refraction in the context of medical imaging has been studied using computational methods. The work focuses on the study of analyzer based imaging, where the information about the sample is recorded in the rocking curve of the analyzer crystal. Computational phantoms based on simple geometrical shapes with differing material properties are used. The objects have realistic dimensions and attenuation properties that could be encountered in real imaging situations. The scattering properties mimic various features of measured small-angle scattering curves. Ray-tracing methods are used to calculate the refraction and attenuation of the beam, and a scattering halo is accumulated, including the effect of multiple scattering. The changes in the shape of the rocking curve are analyzed with different methods, including diffraction enhanced imaging (DEI), extended DEI (E-DEI) and multiple image radiography (MIR). A wide angle DEI, called W-DEI, is introduced and its performance is compared with that of the established methods. The results indicate that the differences in scattered intensities from healthy and malignant breast tissues are distinguishable to some extent with reasonable dose. Especially the fraction of total scattering has large enough differences that it can serve as a useful source of contrast. The peaks related to the macromolecular structure come to angles that are rather large, and have intensities that are only a small fraction of the total scattered intensity. It is found that such peaks seem to have only limited usefulness in medical imaging. It is also found that W-DEI performs rather well when most of the intensity remains in the direct beam, indicating that dark field imaging methods may produce the best results when scattering is weak. Altogether, it is found that the analysis of scattered intensity is a viable option even in medical imaging where the patient dose is the limiting factor.