918 resultados para intramolecular bonding
Resumo:
SmCl3, reacted with CpNa (Cp = Cyclopentadienyl) in the ratio of 1:3 in THF, which then was reacted with (S)-(+)-N-1-(phenylethyl) salicylideneamine/toluene to yield the title complex, [GRAPHICS] The X-ray crystal structure determination of the title complex reveals that 1 is a dimer with intramolecular C-C bond formation and hydrogen transfer, which leads to the configuration turnover of the carbon atom at the benzyl position of the ligand, while those of the newly formed asymmetric centers may have either Ii or S type configurations. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The electron impact mass spectrum (EIMS) of 3-phenyl-1-butyn-3-ol was reported in this paper. Collision-induced dissociation (CID) was used to study the gas phase ion structure of [C8H7](+) formed by the fragmentation of ionized 3-phenyl-1-butyn-3-ol, and that it has the same structure as m/z 103 ions generated by cinnamic acid and alpha-methylstyrene. Deuterium labelling, metastable ion (MI) and CID experimental results indicate the formation of m/z 103 ion resulting from molecular ion of 3-phenyl-1-butyn-3-ol, which is a stepwise procedure via twice proton transfers, rather than concerted process during the successive elimination of methyl radical and neutral carbon monoxide accompanying hydrogen transfer. Moreover, in order to rationalized these fragmentation processes, the bimolecular proton bound complex between benzyne and acetylene intermediate has been proposed.
Resumo:
A series of binary and ternary rare earth complexes with para-substitued benzoic acids and 1,10-phenanthroline were synthesized. The phosphorescence spectra were measured and the lowest tripler state energies of ligands were determined, the phosphorescence lifetimes were obtained and intramolecular energy transfer mechanism between ligands was studied. The luminescence properties were also measured and were in agreement with the prediction. The energy match and intramolecular energy transfer process in these binary and ternary complexes were discussed in detail.
Resumo:
Five new chiral liquid crystal systems induced by intermolecular hydrogen bonding between 4-[(S)-2-chloro-3-methyl]butyroyloxy-4'-stilbazole (MBSB, proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donors) were prepared. Their liquid crystalline properties were investigated by DSC and polarized optical microscopy. Chiral nematic and chiral smectic phases were observed, and the thermal stability of one complex was studied through temperature dependent infrared spectroscopy.
Resumo:
Two new chiral liquid crystals of schiff-base type have been synthesized. This series of compounds contain a-chloro acidic ester chain prepared from commercially available L-valine. Both of the compounds exhibit tilted smectic phases; their phase transitions were studied using DSC and polarized optical microscopy; the influence of intramolecular hydrogen bonds on the phase behavior was studied as well.
Resumo:
Biphenyl derivatives undergo extensive intraannular substituent migrations and subsequent intramolecular ipso substitutions giving rise to a fluorenyl cation and a biphenylene radical cation as common products in mass spectrometry. For biphenyls bearing an alkyl group, interannular substituent migration resulting in a substituted tropylium ion is also observed. Electron-withdrawing groups are found to be much more favourable to these reactions than the electron-donating ones.
Resumo:
In order to define the force of heteropoly acids on absorbed activated carbon surface, IR spectra of 12-silicotungstic acid (SiW12) and 12-tungstophosphoric acid (PW12) absorbed on activated carbon and in oxygen-containing organic compound solutions were studied. Based on the IR spectra and UV characteristics of the heteropoly acids in various chemical conditions, the chemical bonding between heteropoly acid and oxygen-containing gropus on the surface of activated carbon was suggested.
Resumo:
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.
Resumo:
The bonding and the 4f orbital effect of lanthanide elements at different valence state in their compounds have been studied by INDO method in this paper. The results obtained show that the bonding of lanthanide compounds is affected by many factors, such as valence state, ionic radius, ligand, coordinate number, space configuration etc. The strength of bonds composed of different ligands with lanthanide is distinctly different. The covalence of Ln-L bonds of lanthanide ions at high valence state in their compounds is larger than that at low valence state, The covalency at low coordinate number is larger than that at high coordinate number. Some lanthanide compounds with special configuration, besides sigma-bond, can form p(pi)-d(pi) dative bond with much overlap, which makes the Ln-L bond increase markedly. The effect of 4f orbitals on bonding is far less than that of 5d orbitals. The Ln 4f orbitals at 3 or 2 valence state may be considered to be essentially localized, while the contribution of 4f orbitals on bonding in 4 valent cerium compounds increases obviously, up to 1%.
Resumo:
The phase behaviours of poly(vinyl acetate) (PVAc) and poly(styrene-co-acrylonitrile)s (SAN) with poly(epichlorohydrin) (PECH) were examined using differential scanning calorimetry and an optical method using a hot plate. The PECH/PVAc blends showed LCST behaviour. The observed miscibility is thought to be a result of hydrogen-bonding interactions between the alpha-hydrogen atoms of PECH and the carbonyl groups of PVAc. Two SAN copolymers with an acrylonitrile (AN) content of 18 wt% (SAN18) and 25 wt% (SAN25), respectively, were also found to exhibit miscibility with PECH. No phase separation occurred by heating up to about 280-degrees-C, and the individual blend has a single, composition-dependent glass transition temperature. The formation of miscible PECH/SAN blends can be considered as a result of the intramolecular repulsion between styrene and AN units in SAN.
Resumo:
The electronic structure and bond character of europium nitrate complex with azacrown (2, 2)(1, 7, 10, 16-tetraoxa-4, 13-diazacyclooctadecane), [Eu(NO_3)_2(2, 2)] NO_3, have been studied by means of XPS and INDO method. The data of electronic binding energies and charge distribution of atoms in the complex showed that chemical shift of less electronegative nitrogen N1s binding energy was larger than that of more electronegative oxygen O1s binding energy in coordinating atoms, and that charge transfer from N...
Resumo:
Five Eu~(2+)-doped simple fluorides and six Eu~(2+)-doped complex fluorides are synthesized by solid reactions. The strength of the crystal-field at the sites of Eu~(2+) ion, and the degroe of covalenco of Eu—F bond in these hosts are discussed. The f-f transition emission of Eu~(2+) ion is observed in the hosts which has lower coordination number and strong crystal-field. The f-f transition emission of Eu~(2+) ion is observed for the first time in the simple fluoride AlF_3.