921 resultados para interleukin-1 gene complex
Resumo:
Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.
Resumo:
Objective. Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality (λs=82) and heritability (>90%) that primarily affects spinal and sacroiliac joints. Whole genome scans for linkage to AS phenotypes have been conducted, although results have been inconsistent between studies and all have had modest sample sizes. One potential solution to these issues is to combine data from multiple studies in a retrospective meta-analysis. Methods: The International Genetics of Ankylosing Spondylitis Consortium combined data from three whole genome linkage scans for AS (n=3744 subjects) to determine chromosomal markers that show evidence of linkage with disease. Linkage markers typed in different centres were integrated into a consensus map to facilitate effective data pooling. We performed a weighted meta-analysis to combine the linkage results, and compared them with the three individual scans and a combined pooled scan. Results: In addition to the expected region surrounding the HLA-B27 gene on chromosome 6, we determined that several marker regions showed significant evidence of linkage with disease status. Regions on chromosome 10q and 16q achieved 'suggestive' evidence of linkage, and regions on chromosomes 1q, 3q, 5q, 6q, 9q, 17q and 19q showed at least nominal linkage in two or more scans and in the weighted meta-analysis. Regions previously associated with AS on chromosome 2q (the IL-1 gene cluster) and 22q (CYP2D6) exhibited nominal linkage in the meta-analysis, providing further statistical support for their involvement in susceptibility to AS. Conclusion: These findings provide a useful guide for future studies aiming to identify the genes involved in this highly heritable condition. . Published by on behalf of the British Society for Rheumatology.
Resumo:
Background Vascular endothelial growth factor (VEGF) is known to play a major role in angiogenesis. A soluble form of Flt-1, a VEGF receptor, is potentially useful as an antagonist of VEGF, and accumulating evidence suggests the applicability of sFlt-1 in tumor suppression. In the present study, we have developed and tested strategies targeted specifically to VEGF for the treatment of ascites formation.Methods As an initial strategy, we produced recombinant sFLT-1 in the baculovirus expression system and used it as a trap to sequester VEGF in the murine ascites carcinoma model. The effect of the treatment on the weight of the animal, cell number, ascites volume and proliferating endothelial cells was studied. The second strategy involved, producing Ehrlich ascites tumor (EAT) cells stably transfected with vectors carrying cDNA encoding truncated form of Flt-1 and using these cells to inhibit ascites tumors in a nude mouse model. Results The sFLT-1 produced by the baculovirus system showed potent antiangiogenic activity as assessed by rat cornea and tube formation assay. sFLT-1 treatment resulted in reduced peritoneal angiogenesis with a concomitant decrease in tumor cell number, volume of ascites, amount of free VEGF and the number of invasive tumor cells as assayed by CD31 staining. EAT cells stably transfected with truncated form of Flt-1 also effectively reduced the tumor burden in nude mice transplanted with these cells, and demonstrated a reduction in ascites formation and peritoneal angiogenesis. Conclusions The inhibition of peritoneal angiogenesis and tumor growth by sequestering VEGF with either sFlt-1 gene expression by recombinant EAT cells or by direct sFLT-1 protein therapy is shown to comprise a potential therapy. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Studies on the conformational and binding characteristics of the ionophoric antibiotic X-537A (lasalocid-A)�calcium ion complexes have been carried out in deuteriated acetonitrile (CD3 CN) using proton and carbon-13 nuclear magnetic resonance (1 H and 13C n.m.r.) spectroscopy. Detailed analysis of the salt-induced chemical shifts at various X-537A to calcium concentration ratios indicated that X-537A forms charged complexes with calcium with 2 : 1 and 1 : 1 stoicheiometries. The conformational model for the complex based on the n.m.r. data showed that the calcium ion is preferentially bound to one end of the molecule, which is binding to three oxygen atoms, the other end (the salicylic acid part) being relatively free. In the 2 : 1 (sandwich) complex, the calcium ion is sandwiched between two X-537A molecules with three oxygen atoms binding to it from each molecule.
Resumo:
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed. © American Association of Avian Pathologists.
Resumo:
Assessment of the outcome of critical illness is complex. Severity scoring systems and organ dysfunction scores are traditional tools in mortality and morbidity prediction in intensive care. Their ability to explain risk of death is impressive for large cohorts of patients, but insufficient for an individual patient. Although events before intensive care unit (ICU) admission are prognostically important, the prediction models utilize data collected at and just after ICU admission. In addition, several biomarkers have been evaluated to predict mortality, but none has proven entirely useful in clinical practice. Therefore, new prognostic markers of critical illness are vital when evaluating the intensive care outcome. The aim of this dissertation was to investigate new measures and biological markers of critical illness and to evaluate their predictive value and association with mortality and disease severity. The impact of delay in emergency department (ED) on intensive care outcome, measured as hospital mortality and health-related quality of life (HRQoL) at 6 months, was assessed in 1537 consecutive patients admitted to medical ICU. Two new biological markers were investigated in two separate patient populations: in 231 ICU patients and 255 patients with severe sepsis or septic shock. Cell-free plasma DNA is a surrogate marker of apoptosis. Its association with disease severity and mortality rate was evaluated in ICU patients. Next, the predictive value of plasma DNA regarding mortality and its association with the degree of organ dysfunction and disease severity was evaluated in severe sepsis or septic shock. Heme oxygenase-1 (HO-1) is a potential regulator of apoptosis. Finally, HO-1 plasma concentrations and HO-1 gene polymorphisms and their association with outcome were evaluated in ICU patients. The length of ED stay was not associated with outcome of intensive care. The hospital mortality rate was significantly lower in patients admitted to the medical ICU from the ED than from the non-ED, and the HRQoL in the critically ill at 6 months was significantly lower than in the age- and sex-matched general population. In the ICU patient population, the maximum plasma DNA concentration measured during the first 96 hours in intensive care correlated significantly with disease severity and degree of organ failure and was independently associated with hospital mortality. In patients with severe sepsis or septic shock, the cell-free plasma DNA concentrations were significantly higher in ICU and hospital nonsurvivors than in survivors and showed a moderate discriminative power regarding ICU mortality. Plasma DNA was an independent predictor for ICU mortality, but not for hospital mortality. The degree of organ dysfunction correlated independently with plasma DNA concentration in severe sepsis and plasma HO-1 concentration in ICU patients. The HO-1 -413T/GT(L)/+99C haplotype was associated with HO-1 plasma levels and frequency of multiple organ dysfunction. Plasma DNA and HO-1 concentrations may support the assessment of outcome or organ failure development in critically ill patients, although their value is limited and requires further evaluation.
Resumo:
Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.
Resumo:
Interferon-gamma (IFN gamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NF kappa B) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFN gamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of asubset of only GAS containing immune genes were modulated by IFN gamma. As a significant correlation exists between GAS containing immune genes and IFN gamma-regulated gene expression, this strategy may identify novel IFN gamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFN gamma in mediating a plethoraof functions: anti-microbial responses, antigen processing,inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge onIFN gamma mediated signaling and functions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background & objectives: Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and involved in DNA synthesis, DNA repair and DNA methylation. The two common functional polymorphisms of MTHFR, 677C -> T and 1298 A -> C have shown to impact several diseases including cancer. This case-control study was undertaken to analyse the association of the MTHFR gene polymorphisms 677 C -> T and 1298 A -> C and risk of colorectal cancer (CRC).Methods: One hundred patients with a confirmed histopathologic diagnosis of CRC and 86 age and gender matched controls with no history of cancer were taken for this study. DNA was isolated from peripheral blood samples and the genotypes were determined by PCR-RFLP. The risk association was estimated by compounding odds ratio (OR) with 95 per cent confidence interval (CI). Results: Genotype frequency of MTHFR 677 CC, CT and TT were 76.7, 22.1 and 1.16 per cent in controls, and 74,25 and 1.0 per cent among patients. The 'T' allele frequency was 12.21 and 13.5 per cent in controls and patients respectively. The genotype frequency of MTHFR 1298 AA, AC, and CC were 25.6, 58.1 and 16.3 per cent for controls and 22, 70 and 8 per cent for patents respectively. The 'C' allele frequency for 1298 A -> C was 43.0 and 45.3 per cent respectively for controls and patients. The OR for 677 CT was 1.18 (95% CI 0.59-2.32, P = 0.642), OR for 1298 AC was 1.68 (95% CI 0.92-3.08, P = 0.092) and OR for 1298 CC was 0.45(95% CI 0.18-1.12, P = 0.081). The OR for the combined heterozygous state (677 CT and 1298 AC) was 1.18(95% CI 0.52-2.64, P =0.697).Interpretation & conclusion: The frequency of the MTHFR 677 TT genotype is rare as compared to 1298 CC genotype in the population studied. There was no association between 677 C -> T and 1298 A -> C polymorphisms and risk of CRC either individually or in combination. The homozygous state for 1298 A -> C polymorphism appears to slightly lower risk of CRC. This needs to be confirmed with a larger sample size.
Resumo:
Most human ACTA1 skeletal actin gene mutations cause dominant, congenital myopathies often with severely reduced muscle function and neonatal mortality. High sequence conservation of actin means many mutated ACTA1 residues are identical to those in the Drosophila Act88F, an indirect flight muscle specific sarcomeric actin. Four known Act88F mutations occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for similar muscle phenotypes. Mutant homozygotes show phenotypes ranging from a lack of myofibrils to almost normal sarcomeres at eclosion. Aberrant Z-disc-like structures and serial Z-disc arrays, ‘zebra bodies’, are observed in homozygotes and heterozygotes of all four Act88F mutants. These electron-dense structures show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. We conclude that the Drosophila indirect flight muscles provide a good model system for studying ACTA1 mutations.
Resumo:
Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.
Resumo:
Polyamines are some of the most important and ubiquitous small molecules that modulate several functions of plant, animal and bacterial cells. Despite the simplicity of their chemical structure, their specific interactions with other biomolecules cannot be explained solely on the basis of their electrostatic properties. To evolve a structural understanding on the specificity of these interactions it is necessary to determine the structure of complexes of polyamines with other, representative biomolecules. This paper reports the structure of the 1:2 complex of hexanediamine and L-glutamic acid. The complex crystallizes in the monoclonic space group P2(1) with a = 5.171(1) angstrom, b = 22.044(2) angstrom, c = 10.181(2) angstrom and beta = 104.51(1)-degrees. The structure was refined to an R factor of 6.6%. The structures of these complexes not only suggest the importance of hydrogen-bonding interactions of polyamines but also provide some insight into other complementary interactions probably important for the specificity of biomolecular interactions.
Resumo:
The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.
Resumo:
The regulation of eukaryotic gene transcription poses major challenges in terms of the innumerable protein factors required to ensure tissue or cell-type specificity. While this specificity is sought to be explained by the interaction of cis-acting DNA elements and thetrans-acting protein factor(s), considerable amount of degeneracy has been observed in this interaction. Immunoglobulin heavy chain gene expression in B cells and liver-specific gene expression are discussed as examples of this complexity in this article. Heterodimerization and post-translational modification of transcription factors and the organization of composite promoter elements are strategies by which diverse sets of genes can be regulated in a specific manner using a finite number of protein factors