988 resultados para inter-laboratory
Resumo:
Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
One hundred complexes have been investigated exhibiting D-X center dot center dot center dot A interactions, where X = H, Cl or Li and DX is the `X bond' donor and A is the acceptor. The optimized structures of all these complexes have been used to propose a generalized `Legon-Millen rule' for the angular geometry in all these interactions. A detailed Atoms in Molecules (AIM) theoretical analysis confirms an important conclusion, known in the literature: there is a strong correlation between the electron density at the X center dot center dot center dot A bond critical point (BCP) and the interaction energy for all these interactions. In addition, we show that extrapolation of the fitted line leads to the ionic bond for Li-bonding (electrostatic) while for hydrogen and chlorine bonding, it leads to the covalent bond. Further, we observe a strong correlation between the change in electron density at the D-X BCP and that at the X center dot center dot center dot A BCP, suggesting conservation of the bond order. The correlation found between penetration and electron density at BCP can be very useful for crystal structure analysis, which relies on arbitrary van der Waals radii for estimating penetration. Various criteria proposed for shared-and closed-shell interactions based on electron density topology have been tested for H/Cl/Li bonded complexes. Finally, using the natural bond orbital (NBO) analysis it is shown that the D-X bond weakens upon X bond formation, whether it is ionic (DLi) or covalent (DH/DCl) and the respective indices such as ionicity or covalent bond order decrease. Clearly, one can think of conservation of bond order that includes ionic and covalent contributions to both D-X and X center dot center dot center dot A bonds, for not only X = H/Cl/Li investigated here but also any atom involved in intermolecular bonding.
Resumo:
In this discussion, we show that a static definition of a `bond' is not viable by looking at a few examples for both inter-and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate `hydrogen bonding' from `van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg center dot center dot center dot HX complexes (Rg = He/Ne/Ar and X = F/Cl/Br) and ethane-1,2-diol. Results for the Rg center dot center dot center dot HX/DX complexes show that Rg center dot center dot center dot DX could have a `deuterium bond' even when Rg center dot center dot center dot HX is not `hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an `intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the O center dot center dot center dot O stretching, though a `bond' is not found in the equilibrium structure. This dynamical `bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration `breaks' an existing bond and in the later case, a vibration leads to `bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this `hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition.
Resumo:
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10 degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four post Lest rig. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Hydroxyl terminated azide binders can undergo a spurious reaction with diisocyanates to form tetrazoline-5-one via an inter molecular 1,3-dipolar cycloaddition reaction apart from urethane/allophanate groups which has been overlooked. This has serious implications on solid propellants. The computed activation barrier using density functional theory (DFT) for urethane formation reaction is 28.4 kJ mol(-1) and that for tetrazoline-5-one formation reaction is 108.0 kJ mol(-1). DFT studies reveal that the rate limiting step of the reaction is 1,3-dipolar cycloaddition between azide and isocyanate. A dual cure was observed in the temperature ranges 42-77 degrees C and 78-146 degrees C by differential scanning calorimetry (DSC) and rheological studies, confirming multiple reactions. Tetrazoline-5-one formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance spectroscopy (NMR).
Resumo:
We investigate methods to explore the CP nature of the t (t) over barh coupling at the LHC, focusing on associated production of the Higgs boson with a t (t) over bar pair. We first discuss the constraints implied by low-energy observables and by the Higgs-rate information from available LHC data, emphasizing that they cannot provide conclusive evidence on the nature of this coupling. We then investigate kinematic observables that could probe the t (t) over barh coupling directly, in particular, quantities that can be constructed out of just laboratory-frame kinematics. We define one such observable by exploiting the fact that t (t) over bar spin correlations do also carry information about the CP nature of the t (t) over barh coupling. Finally, we introduce a CP-odd quantity and a related asymmetry, able to probe CP violation in the t (t) over barh coupling and likewise, constructed out of laboratory-frame momenta only.
Resumo:
A real-time cooperative localization system, utilizing dual foot-mounted low-cost inertial sensors and RF-based inter-agent ranging, has been developed. Scenario-based tests have been performed, using fully-equipped firefighters mimicking a search operation in a partly smoke-filled environment, to evaluate the performance of the TOR (Tactical lOcatoR) system. The performed tests included realistic firefighter movements and inter-agent distances, factors that are crucial in order to provide realistic evaluations of the expected performance in real-world operations. The tests indicate that the TOR system may be able to provide a position accuracy of approximately two to three meters during realistic firefighter operations, with only two smoke diving firefighters and one supervising firefighter within range.
Resumo:
Mycobacterium tuberculosis has the ability to persist within the host in a dormant stage. One important condition believed to contribute to dormancy is reduced access to oxygen known as hypoxia. However, the response of M. tuberculosis to such hypoxia condition is not fully characterized. Virtually all dormant models against tuberculosis tested in animals used laboratory strain H37Rv or Erdman strain. But major outbreaks of tuberculosis (TB) occur with the strains that have widely different genotypes and phenotypes compared to H37Rv. In this study, we used a custom oligonucleotide microarray to determine the overall transcriptional response of laboratory strain (H37Rv) and most prevalent clinical strains (S7 and S10) of M. tuberculosis from South India to hypoxia. Analysis of microarray results revealed that a total of 1161 genes were differentially regulated (>= 1.5 fold change) in H37Rv, among them 659 genes upregulated and 502 genes down regulated. Microarray data of clinical isolates showed that a total of 790 genes were differentially regulated in S7 among which 453 genes were upregulated and 337 down regulated. Interestingly, numerous genes were also differentially regulated in S10 (total 2805 genes) of which 1463 genes upregulated and 1342 genes down regulated during reduced oxygen condition (Wayne's model). One hundred and thirty-four genes were found common and upregulated among all three strains (H37Rv, S7, and S10) and can be targeted for drug/vaccine development against TB. (C) 2015 Published by Elsevier B.V.
Resumo:
Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant d- and localized f-electrons) and intersite (superexchange) correlation J (between localized f-electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of d- and f-electrons are observed to depend strongly on the value off, J and also on the total number of d-electrons (N-d). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the recent past, many studies have been carried out on the determination of coefficient of consolidation (c(v)) from the time (t)-deformation (d) data obtained from conventional consolidation tests. Several researchers have also proposed different curve fitting procedures for determining cv from the t-d data. It is anticipated that the cv values obtained from the t-d data may be influenced by initial and secondary compressions. Nevertheless, the pore water pressure data measured during the consolidation process will be independent of initial and secondary compressions. In this study, the conventional Asaoka (1978) method is extended to evaluate cv and end-of-primary (EOP) consolidation from the pore water pressure data measured from laboratory experiments. Laboratory experiments were carried out on the modified one-dimensional consolidation apparatus on different remoulded clay samples measuring pore water pressure during the consolidation process. The cv and EOP computed from the proposed approach have been compared with the results of the t-d data and found to be in good agreement.
Resumo:
The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.
Some Key Technics of Drop Tower Experiment Device of National Microgravity Laboratory (China) (NMLC)
Resumo:
Drop tower is an important ground based facility for microgravity science experiment. The technical performances of the drop tower NMLC are advanced compared with similar facilities in the US, Germany and Japan. The main components such as drop capsule, deceleration devices, release mechanism present its advantages and creativities.
Resumo:
Any waterway with one end closed and the other open is generally called a blind channel. The main flow tends to expand, separate, and cause circulation at the mouth of blind channels. The main flow continuously transfers momentum and sediment into the circulation region through the turbulent mixing region (TMR) between them, thus leading to a large amount of sediment deposition in the blind channels. This paper experimentally investigated the properties of the water flow and sediment diffusion in TMR, demonstrating that both water flow and sediment motion in TMR approximately coincide with a similar structure as in the free mixing layer induced by a jet. The similarity functions of flow velocity and sediment concentration are then assumed, based on observation, and the resulting calculation of these functions is substantially facilitated. For the kind of low velocity flow system of blind channels with a finite width, a simple formula for the sediment deposition rate in blind channels is established by analyzing the gradient of crosswise velocity and sediment concentration in TMR.