885 resultados para intensity-duration-frequency relations
Resumo:
This paper presents a new concept of frequency coherence in the frequency-time domain to describe the field correlations between two lightwaves with different frequencies. The coherence properties of the modulated beams from lightwave sources with different spectral widths and the modes of Fabry-Wrot (FP) laser are investigated. It is shown that the lightwave and its corresponding sidebands produced by the optical intensity modulation are perfectly coherent. The measured linewidth of the beat signal is narrow and almost identical no matter how wide the spectral width of the beam is. The frequency spacing of the adjacent FP modes is beyond the operation frequency range of the measurement instruments. In our experiment, optical heterodyne technique is used to investigate the frequency coherence of the modes of FP laser by means of the frequency shift induced by the optical intensity modulation. Experiments show that the FP modes are partially coherent and the mode spacing is relatively fixed even when the wavelength changes with ambient temperature, bias current and other factors. Therefore, it is possible to generate stable and narrow-linewidth signals at frequencies corresponding to several mode intervals of the laser.
Resumo:
A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.
Resumo:
An improved optical self-heterodyne method utilizing a distributed Bragg reflector (DBR) tunable laser and an optical fiber ring interferometer is presented in this paper. The interference efficiency can be increased by 7 dB compared with the scheme using the conventional Mach-Zehnder interferometer. The unsteady process that the beating frequency experiences in each tuning period is investigated. According to the measurement results, the wavelength and optical power of the tunable laser will be steady when the square-wave frequency is lower than 300 kHz. It has been shown that when a square-wave voltage is applied to the phase section of the tunable laser, the laser linewidths vary in a wide range, and are much larger than that under dc voltage tuning. The errors caused by the variations in the linewidth of the beat signal and optical power can be eliminated using the proposed calibration procedures, and the measurement accuracy can, therefore, be significantly improved. Experiments show that the frequency responses obtained using our method agree well with the data provided by the manufacturer, and the improved optical self-heterodyne method is as accurate as the intensity noise technique.
Resumo:
An analytic closed form for the second- order or fourth- order Markovian stochastic correlation of attosecond sum- frequency polarization beat ( ASPB) can be obtained in the extremely Doppler- broadened limit. The homodyne detected ASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light. fields with arbitrary bandwidth. The physical explanation for this is that the Gaussian- amplitude. field undergoes stronger intensity. fluctuations than a chaotic. field. On the other hand, the intensity ( amplitude). fluctuations of the Gaussian- amplitude. field or the chaotic. field are always much larger than the pure phase. fluctuations of the phase-diffusion field. The field correlation has weakly influence on the ASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the ASPB signal shows resonant- nonresonant cross correlation, and the sensitivities of ASPB signal to three Markovian stochastic models increase as time delay is increased. A Doppler- free precision in the measurement of the energy- level sum can be achieved with an arbitrary bandwidth. The advantage of ASPB is that the ultrafast modulation period 900as can still be improved, because the energy- level interval between ground state and excited state can be widely separated.
Resumo:
The Indian monsoon, an integral part of the global climate system, has been extensively investigated during the past decades. Most of the proxy records are derived from marine sediments and focused on time periods of the late Miocene and Pleistocene. The Pliocene represents a period when Earth’s boundary conditions underwent dramatic changes. However, variations of the Indian monsoon during the Pliocene and its forcing mechanisms have remained unclear. The Yuanmou Basin, located in the region of the Indian monsoon, provides an ideal target for understanding the Pliocene history of Indian monsoon variations. Detailed investigations on the lithostratigraphy, magnetostratigraphy and limnology of a 650-m-thick fluvio-lacustrine sedimentary sequence from the basin are carried out in the present study. The clay and clay-plus-fine-silt fractions of the sediments are referred to the midlake-facies components, and changes in the percentages of both fractions generally reflect changes in the water level of the lakes developed in the basin closely related to variations in the intensity of the Indian monsoon. Whereas the greenish-gray lacustrine mud beds represent the environment of deep-water lakes, and the frequency of individual lacustrine mud beds is considered to indicate the frequency of the deep-water lakes developed in the basin associated with the variability of the Indian monsoon. The proxy data suggest that the Indian monsoon experienced abrupt shifts at 3.53, 3.14, 2.78 and 2.42 Ma, respectivey. 1) Since 3.53 Ma, the midlake-facies components displayed a general trend of increase in the concentrations, accompanied by an increase in the sedimentation rate from an average ~10 to 25 cm ka–1. The data suggest that high stands of the lakes in the basin rose progressively, implying a gradual intensification of the Indian monsoon since that time. This shift occurred coeval with the accelerated uplift of the northern Tibetan Plateau, denoting a close link between the Indian monsoon strengthening and the Tibetan Plateau uplifting. 2) 2.78 Ma ago, the concentrations of the midlake-facies components decreased abruptly and the dominant fraction of the sediments turned to fluvial sands. The data indicate that lakes in the basin disappeared, reflecting a dramatic decline in the intensity of the Indian monsoon at that time. This shift coincided with the formation of extensive Northern Hemisphere ice sheets, implying a quick response of the low-latitude monsoon regime to the high-latitude glaciation. 3) At 3.14 Ma, the initial appearance of blackish-grey mud beds with long durations and occasional occurrences of lacustrine mud beds indicate that the basin was overall dominated by shallow lakes, implying a shift to decreased variability of the Indian monsoon at that time. At 2.42 Ma, an increase in the frequency and a decrease in the duration of the lacustrine mud beds suggest that deep-water lakes were frequently developed in the basin, denoting a shift to increased variability of the Indian monsoon at that time. The former shift coincides with the onset of large-scale glaciation in the circum Atlantic region and the latter corresponds to the inception of predominance of the 41 ka periodicity in Northern Hemisphere ice-sheet cover fluctuations, presumably suggesting a physical link between the Indian monsoon system and the high-latitude ice sheets in the Northern Hemisphere.
Resumo:
This work addresses two related questions. The first question is what joint time-frequency energy representations are most appropriate for auditory signals, in particular, for speech signals in sonorant regions. The quadratic transforms of the signal are examined, a large class that includes, for example, the spectrograms and the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect dynamic regions. A set of desired properties is proposed for the representation: (1) shift-invariance, (2) positivity, (3) superposition, (4) locality, and (5) smoothness. Several relations among these properties are proved: shift-invariance and positivity imply the transform is a superposition of spectrograms; positivity and superposition are equivalent conditions when the transform is real; positivity limits the simultaneous time and frequency resolution (locality) possible for the transform, defining an uncertainty relation for joint time-frequency energy representations; and locality and smoothness tradeoff by the 2-D generalization of the classical uncertainty relation. The transform that best meets these criteria is derived, which consists of two-dimensionally smoothed Wigner distributions with (possibly oriented) 2-D guassian kernels. These transforms are then related to time-frequency filtering, a method for estimating the time-varying 'transfer function' of the vocal tract, which is somewhat analogous to ceptstral filtering generalized to the time-varying case. Natural speech examples are provided. The second question addressed is how to obtain a rich, symbolic description of the phonetically relevant features in these time-frequency energy surfaces, the so-called schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks, are one feature that is proposed. If non-oriented kernels are used for the energy representation, then the ridge tops can be identified, with zero-crossings in the inner product of the gradient vector and the direction of greatest downward curvature. If oriented kernels are used, the method can be generalized to give better orientation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency locality. Many speech examples are given showing the performance for some traditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel transitions, female speech, and imperfect transmission channels.
Resumo:
Macduff, J. H., Humphreys, M. O., Thomas, Howard (2002). Effects of a stay-green mutation on plant nitrogen relations in Lolium perenne during N starvation and after defoliation. Annals of Botany, 89 (1), 11-21. Sponsorship: BBSRC RAE2008
Resumo:
Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.
Resumo:
It is apparent from the widespread distribution of burnt mounds that Ireland was the most prolific user of pyrolithic technology in Bronze Age Europe. Even though burnt mounds are the most common prehistoric site type in Ireland, they have not received the same level of research as other prehistoric sites. This is primarily due to the paucity of artefact finds and the unspectacular nature of the archaeological remains, compounded by the absence of an appropriate research framework. Due to the widespread use of the technology and the various applications of hot water, narratives related to these sites have revolved around discussions of age and function. This has resulted in a generalised classification, where the term ‘fulacht fia’ covers several site types that have similar features but differing functions and age. The study presents a re-evaluation of fulachtaí fia in light of some 1000 sites excavated in Ireland. This is the most comprehensive study undertaken on the use of pyrolithic technology in prehistoric Ireland, dealing with different aspects of site function, chronology, social role and cultural context. A number of key areas have been identified in relation to our understanding of these sites. Previous investigations of burnt mounds have provided little information on the temporality of individual sites. It has been established that appropriate sampling strategies can provide important information about the formation of individual sites, their relationships to each other and to other monuments in the same cultural landscape. The evidence suggests that considerable caution should be exercised with regard to certain single radiometric dates from burnt stone deposits, based on the degree of certainty of the dated sample and its association with pyrolithic activity. Previously regarded as Bronze Age in date, there are now numerous examples of pyrolithic-type processes in earlier contexts, with the origins of the water-boiling phenomenon now considered to be Early Neolithic. A review of recent excavation evidence provides new insights into the use of pyrolithic technology for cooking. This is based on the discovery of faunal remains at several sites, combined with insights gained through experimental studies. The model proposed here is of open-air communal feasting and food sharing hosted by small family groups, as a medium for social bonding and the construction of community. It is also argued that if cooking was the primary activity taken place at these sites, this should not be viewed as a mundane functional activity, but rather one that actively contributed to the constitution of social relations. The formality of the technology is also supported by the presence of possible specialised structures, some of which were used for cooking/feasting while others were for ritualised sweat-bathing. The duration and frequency of activities associated with burnt mounds and the opportunities they provided for social interaction suggest that these sites contributed some familiar frames of reference to contemporary discourse.
Resumo:
BACKGROUND: The Exercise Intensity Trial (EXcITe) is a randomized trial to compare the efficacy of supervised moderate-intensity aerobic training to moderate to high-intensity aerobic training, relative to attention control, on aerobic capacity, physiologic mechanisms, patient-reported outcomes, and biomarkers in women with operable breast cancer following the completion of definitive adjuvant therapy. METHODS/DESIGN: Using a single-center, randomized design, 174 postmenopausal women (58 patients/study arm) with histologically confirmed, operable breast cancer presenting to Duke University Medical Center (DUMC) will be enrolled in this trial following completion of primary therapy (including surgery, radiation therapy, and chemotherapy). After baseline assessments, eligible participants will be randomized to one of two supervised aerobic training interventions (moderate-intensity or moderate/high-intensity aerobic training) or an attention-control group (progressive stretching). The aerobic training interventions will include 150 mins.wk⁻¹ of supervised treadmill walking per week at an intensity of 60%-70% (moderate-intensity) or 60% to 100% (moderate to high-intensity) of the individually determined peak oxygen consumption (VO₂peak) between 20-45 minutes/session for 16 weeks. The progressive stretching program will be consistent with the exercise interventions in terms of program length (16 weeks), social interaction (participants will receive one-on-one instruction), and duration (20-45 mins/session). The primary study endpoint is VO₂peak, as measured by an incremental cardiopulmonary exercise test. Secondary endpoints include physiologic determinants that govern VO₂peak, patient-reported outcomes, and biomarkers associated with breast cancer recurrence/mortality. All endpoints will be assessed at baseline and after the intervention (16 weeks). DISCUSSION: EXCITE is designed to investigate the intensity of aerobic training required to induce optimal improvements in VO₂peak and other pertinent outcomes in women who have completed definitive adjuvant therapy for operable breast cancer. Overall, this trial will inform and refine exercise guidelines to optimize recovery in breast and other cancer survivors following the completion of primary cytotoxic therapy. TRIAL REGISTRATION: NCT01186367.
Resumo:
In the present study, ratings of the memory of an important event from the previous week on the frequency of voluntary and involuntary retrieval, belief in its accuracy, visual imagery, auditory imagery, setting, emotional intensity, valence, narrative coherence, and centrality to the life story were obtained from 988 adults whose ages ranged from 15 to over 90. Another 992 adults provided the same ratings for a memory from their confirmation day, when they were at about age 14. The frequencies of involuntary and voluntary retrieval were similar. Both frequencies were predicted by emotional intensity and centrality to the life story. The results from the present study-which is the first to measure the frequency of voluntary and involuntary retrieval for the same events-are counter to both cognitive and clinical theories, which consistently claim that involuntary memories are infrequent as compared with voluntary memories. Age and gender differences are noted.
Resumo:
Numerical simulations are used to study the temporal and spectral characteristics of broadband supercontinua generated in photonic crystal fiber. In particular, the simulations are used to follow the evolution with propagation distance of the temporal intensity, the spectrum, and the cross-correlation frequency resolved optical gating (XFROG) trace. The simulations allow several important physical processes responsible for supercontinuum generation to be identified and, moreover, illustrate how the XFROG trace provides an intuitive means of interpreting correlated temporal and spectral features of the supercontinuum. Good qualitative agreement with preliminary XFROG measurements is observed. © 2002 Optical Society of America.
Resumo:
Variable Frequency Microwave (VFM) processing of heterogeneous chip-on-board assemblies is assessed using a multiphysics modelling approach. The Frequency Agile Microwave Oven Bonding System (FAMOBS) is capable of rapidly processing individual packages on a Chip-On-Board (COB) assembly. This enables each package to be processed in an optimal manner, with temperature ramp rate, maximum temperature and process duration tailored to the specific package, a significant benefit in assemblies containing disparate package types. Such heterogeneous assemblies may contain components such as large power modules alongside smaller modules containing low thermal budget materials with highly disparate processing requirements. The analysis of two disparate packages has been assessed numerically to determine the applicability of the dual section microwave system to curing heterogeneous devices and to determine the influence of differing processing requirements of optimal process parameters.
Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men
Resumo:
In the present study, we assessed the effects of exercise intensity on salivary immunoglobulin A (s-IgA) and salivary lysozyme (s-Lys) and examined how these responses were associated with salivary markers of adrenal activation. Using a randomized design, 10 healthy active men participated in three experimental cycling trials: 50% maximal oxygen uptake (VO2max), 75%VO2max, and an incremental test to exhaustion. The durations of the trials were the same as for a preliminary incremental test to exhaustion (22.3 min, sx = 0.8). Timed, unstimulated saliva samples were collected before exercise, immediately after exercise, and 1 h after exercise. In the incremental exhaustion trial, the secretion rates of both s-IgA and s-Lys were increased. An increase in s-Lys secretion rate was also observed at 75%VO2max. No significant changes in saliva flow rate were observed in any trial. Cycling at 75%VOmax and to exhaustion increased the secretion of alpha-amylase and chromogranin A immediately after exercise; higher cortisol values at 75%VO2max and in the incremental exhaustion trial compared with 50%VO2max were observed 1 h immediately after exercise only. These findings suggest that short-duration, high-intensity exercise increases the secretion rate of s-IgA and s-Lys despite no change in the saliva flow rate. These effects appear to be associated with changes in sympathetic activity and not the hypothalamic - pituitary - adrenal axis.
Resumo:
The mean intensity of the NE Atlantic upwelling system at its northern limit (Galicia, NW Spain) decreased during the last 40 years. At the same time, warming of surface waters was detected. Plankton biomass and composition are expected to reflect such changes when integrated over large time and space scales. In this study, biomass, abundance and species composition of phyto- and zooplankton were analysed to search for significant patterns of annual change and relations with upwelling intensity. Regionally integrated, mostly offshore, data were obtained from the Continuous Plankton Recorder (since 1958) whereas coastal data from Vigo and A Coruña came from the Radiales program (since 1987). No significant trends were found in phytoplankton biomass at either regional or local scales. However, there was a significant decrease in diatom abundance at regional scales and also of large species at local scales. Zooplankton abundance (mainly copepods) significantly decreased offshore but increased near the coast. Biomass of zooplankton also increased near the coast, with the fastest rates in the south. Warm-water species, like Temora stylifera, were increasingly abundant at both regional and local scales. Significant correlations between upwelling intensity and plankton suggest that climatic effects were delayed for several years. Our results indicate that the effects of large scale climatic trends on plankton communities are being effectively modulated within the pelagic ecosystem in this upwelling region.