884 resultados para insulin receptor substrate 1
Resumo:
A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.
Resumo:
Multiple lines of evidence reveal that activation of the tropomyosin related kinase B (TrkB) receptor is a critical molecular mechanism underlying status epilepticus (SE) induced epilepsy development. However, the cellular consequences of such signaling remain unknown. To this point, localization of SE-induced TrkB activation to CA1 apical dendritic spines provides an anatomic clue pointing to Schaffer collateral-CA1 synaptic plasticity as one potential cellular consequence of TrkB activation. Here, we combine two-photon glutamate uncaging with two photon fluorescence lifetime imaging microscopy (2pFLIM) of fluorescence resonance energy transfer (FRET)-based sensors to specifically investigate the roles of TrkB and its canonical ligand brain derived neurotrophic factor (BDNF) in dendritic spine structural plasticity (sLTP) of CA1 pyramidal neurons in cultured hippocampal slices of rodents. To begin, we demonstrate a critical role for post-synaptic TrkB and post-synaptic BDNF in sLTP. Building on these findings, we develop a novel FRET-based sensor for TrkB activation that can report both BDNF and non-BDNF activation in a specific and reversible manner. Using this sensor, we monitor the spatiotemporal dynamics of TrkB activity during single-spine sLTP. In response to glutamate uncaging, we report a rapid (onset less than 1 minute) and sustained (lasting at least 20 minutes) activation of TrkB in the stimulated spine that depends on N-methyl-D-aspartate receptor (NMDAR)-Ca2+/Calmodulin dependent kinase II (CaMKII) signaling as well as post-synaptically synthesized BDNF. Consistent with these findings, we also demonstrate rapid, glutamate uncaging-evoked, time-locked release of BDNF from single dendritic spines using BDNF fused to superecliptic pHluorin (SEP). Finally, to elucidate the molecular mechanisms by which TrkB activation leads to sLTP, we examined the dependence of Rho GTPase activity - known mediators of sLTP - on BDNF-TrkB signaling. Through the use of previously described FRET-based sensors, we find that the activities of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) require BDNF-TrkB signaling. Taken together, these findings reveal a spine-autonomous, autocrine signaling mechanism involving NMDAR-CaMKII dependent BDNF release from stimulated dendritic spines leading to TrkB activation and subsequent activation of the downstream molecules Rac1 and Cdc42 in these same spines that proves critical for sLTP. In conclusion, these results highlight structural plasticity as one cellular consequence of CA1 dendritic spine TrkB activation that may potentially contribute to larger, circuit-level changes underlying SE-induced epilepsy.
Resumo:
A functional nervous system requires the precise arrangement of all nerve cells and their neurites. To achieve this correct assembly, a myriad of molecular guidance cues works together to direct the outgrowth of neurites to their correct positions. The small nematode C. elegans provides the ideal model system to study the complex mechanisms of neurite guidance due to its relatively simple nervous system, composed of 302 neurons. I used two mechanosensory neurons, called the posterior lateral microtubule (PLM), to investigate the role of the ephrin and Eph receptor protein family in neurite termination in C. elegans. Activation of the C. elegans Eph receptor VAB-1 on the PLM growth cone is sufficient to cause PLM termination, but the identity and location of the activating ligand has not been established. In my thesis I investigated the ability of the ephrin ligand EFN-1 to activate VAB-1 to cause PLM termination when expressed on the same cell (in cis) and on opposing cells (in trans) to the receptor. I showed that EFN-1 is able to activate VAB-1 in cis and in trans to cause PLM termination. I also assessed the hypodermal seam cells as the source of the ephrin stop cue using fluorescently labelled and seam cell mutant transgenic worms. I found that although the PLM shows consistent termination on the seam cell V2 in wild type worms independent of PLM length, this process is not significantly disrupted in seam cell mutants. With this information I have created a new hypothesis that the PLM neurite is able the provide a positional cue for the developing seam cells, and have created a new transgenic strain which can be used to assess the impact of PLM and ALM cell ablation on seam cell position. My research is the first to demonstrate the ability of an ephrin ligand to activate its ephrin receptor in cis, and further research can investigate if this finding has in vivo applications.
Resumo:
Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.
Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study
Resumo:
Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI,, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively). Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045). Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS.
Resumo:
Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 × 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-γ coactivator-1α (ET ∼8.5-fold, ST ∼10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET ∼26-fold, ST ∼39-fold), vascular endothelial growth factor (VEGF; ET ∼4.5-fold, ST ∼4-fold), and muscle atrophy F-box protein (MAFbx) (ET ∼2-fold, ST ∼0.4-fold) mRNA increased in both groups, whereas MyoD (∼3-fold), myogenin (∼0.9-fold), and myostatin (∼2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (∼7-fold, P < 0.01) and MyoD (∼0.7-fold) increased, whereas MAFbx (∼0.7-fold) and myostatin (∼0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.
Resumo:
Background: Bronchopulmonary dysplasia (BPD) is one of the most common complications after preterm birth and is associated with intrauterine exposure to bacteria. Transforming growth factor-β (TGFβ) is implicated in the development of BPD. Objectives: We hypothesized that different and/or multiple bacterial signals could elicit divergent TGFβ signaling responses in the developing lung. Methods: Time-mated pregnant Merino ewes received an intra-amniotic injection of lipopolysaccharide (LPS) and/or Ureaplasma parvum serovar 3 (UP) at 117 days' and/or 121/122 days' gestational age (GA). Controls received an equivalent injection of saline and or media. Lambs were euthanized at 124 days' GA (term = 150 days' GA). TGFβ1, TGFβ2, TGFβ3, TGFβ receptor (R)1 and TGFβR2 protein levels, Smad2 phosphorylation and elastin deposition were evaluated in lung tissue. Results: Total TGFβ1 and TGFβ2 decreased by 24 and 51% after combined UP+LPS exposure, whereas total TGFβ1 increased by 31% after 7 days' LPS exposure but not after double exposures. Alveolar expression of TGFβR2 decreased 75% after UP, but remained unaltered after double exposures. Decreased focal elastin deposition after single LPS exposure was prevented by double exposures. Conclusions: TGFβ signaling components and elastin responded differently to intrauterine LPS and UP exposure. Multiple bacterial exposures attenuated TGFβ signaling and normalized elastin deposition.
Resumo:
An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1-14C]pyruvate in situ from [1-14C]lactate plus l-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1-14C]lactate, in contrast to those for [1-14C] pyruvate. These factors allow a 5–10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1-14C]lactate system was 215 ± 55 pmol · min−1 · mg−1 protein (n = 18). The advantages of this assay system are discussed.
Resumo:
Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
BACKGROUND Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. METHODS The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. RESULTS Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. CONCLUSIONS These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer.
Resumo:
Conjugation of chemicals with glutathione (GSH) can lead to decreased or increased toxicity. A genetic deficiency in the GSH S-transferase μ class gene M1 has been hypothesized to lead to greater risk of lung cancer in smokers. Recently a gene deletion polymorphism involving the human θ enzyme T1 has been described; the enzyme is present in erythrocytes and can be readily assayed. A rat θ class enzyme, 5-5, has structural and catalytic similarity and the protein was expressed in the Salmonella typhimurium tester strain TA1535. Expression of the cDNA vector increased the mutagenicity of ethylene dibromide and several methylene dihalides. Mutations resulting from the known GSH S-transferase substrate 1,2-epoxy-3-(4′nitrophenoxy)propane were decreased in the presence of the transferase. Expression of transferase 5-5 increased mutations when 1,2,3,4-diepoxybutane (butadiene diepoxide), 4-bromo-1,2-epoxybutane, or 1,3-dichloracetone were added. The latter compound is a model for the putative 1,2-dibromo-3-chloropropane oxidation product 1-bromo-3-chloroacetone. These genotoxicity and genotyping assays may be of use in further studies of the roles of GSH S-transferase θ enzymes in bioactivation and detoxication and any changes in risk due to polymorphism.
Resumo:
Recently, we inserted the plasmid vector pKK233-2 containing rat GSH S-transferase (GST) 5-5 cDNA into Salmonella typhimurium TA1535 and found that these bacteria [GST 5-5(+)] expressed the protein and produced mutations when ethylene or methylene dihalides were added [Thier, R., Taylor, J. B., Pemble, S. E., Ketterer, B., Persmark, M., Humphreys, W. G., and Guengerich, F. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8576-8580]. After exposure to the known GST 5-5 substrate 1,2-epoxy-3-(4′-nitrophenoxy)propane, the GST 5-5(+) strain showed fewer mutants than the bacteria transfected with the cDNA clone in a reverse orientation [GST 5-5(-)], suggesting a protective role of GST 5-5. However, mutations were considerably enhanced in the GST 5-5(+) strain [as compared to GST 5-5(-)] when 1,2,3,4-diepoxybutane (butadiene diepoxide) or 1,2-epoxy-4-bromobutane was added. The GST 5-5(+) and GST 5-5(-) bacterial stains showed similar responses to 1,2-epoxypropane, 3,4-epoxy-1-butene, and 1,4-dibromobutane. The results suggest that some bifunctional activated butanes are transformed to mutagenic products through GSH conjugation. We also found that the GST 5-5(+) strain showed enhanced mutagenicity with 1,4-dibromo-2,3-epoxybutane, 1,2-epoxy-3-bromopropane (epibromohydrin), and (±)-1,4-dibromo-2,3-dihydroxybutane. The possibility was considered that a 5-membered thialonium ion may be involved in the mutagenicity. Model thialonium compounds were rather stable to hydrolysis in aqueous solution at pH 7.4 and slowly alkylated 4-(4-nitrobenzyl)pyridine. The presence of a hydroxyl group β to the sulfur did not enhance reactivity. Mechanisms involving episulfonium ions are considered more likely. Potential oxidation products of the toxic pesticide 1,2-dibromo-3-chloropropane (DBCP) were also considered in this system. DBCP itself gave rather similar results in the two strains. Others have reported that oxidation of DBCP is required for mutagenicity, along with GST-catalyzed GSH conjugation [Simula, T. P., Glancey, M. J., Söderlund, E. J., Dybing, E., and Wolf, C. R. (1993) Carcinogenesis 14, 2303-2307]. The putative oxidation product 1,2-dibromopropional did not show a difference between the two strains. However, 1,3-dichloroacetone, a model for the putative oxidation product 1-bromo-3-chloroacetone, was considerably more mutagenic in the GST 5-5(+) strain.
Resumo:
Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.
Resumo:
Genes in the TGF9 signaling pathway play important roles in the regulation of ovarian follicle growth and ovulation rate. Mutations in three genes in this pathway, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and the bone morphogenetic protein receptor B 1 (BMPRB1), influence dizygotic (DZ) twinning rates in sheep. To date, only variants in GDF9 and BMP15, but not their receptors transforming growth factor ss receptor 1 (TGFBR1), bone morphogenetic protein receptor 2 (BMPR2) and BMPR1B, have been investigated with respect to their roles in human DZ twinning. We screened for rare and novel variants in TGFBR1, BMPR2 and BMPR1B in mothers of dizygotic twins (MODZT) from twin-dense families, and assessed association between genotyped and imputed variants and DZ twinning in another large sample of MODZT. Three novel variants were found: a deep intronic variant in BMPR2, and one intronic and one non-synonymous exonic variant in BMPRB1 which would result in the replacement of glutamine by glutamic acid at amino acid position 294 (p.Gln294Glu). None of these variants were predicted to have major impacts on gene function. However, the p.Gln294Glu variant changes the same amino acid as a sheep BMPR1B functional variant and may have functional consequences. Six BMPR1B variants were marginally associated with DZ twinning in the larger case-control sample, but these were no longer significant once multiple testing was taken into account. Our results suggest that variation in the TGF9 signaling pathway type II receptors has limited effects on DZ twinning rates in humans.
Resumo:
Gene therapy is a promising novel approach for treating cancers resistant to or escaping currently available modalities. Treatment approaches are based on taking advantage of molecular differences between normal and tumor cells. Various strategies are currently in clinical development with adenoviruses as the most popular vehicle. Recent developments include improving targeting strategies for gene delivery to tumor cells with tumor specific promoters or infectivity enhancement. A rapidly developing field is as well replication competent agents, which allow improved tumor penetration and local amplification of the anti-tumor effect. Adenoviral cancer gene therapy approaches lack cross-resistance with other treatment options and therefore synergistic effects are possible. This study focused on development of adenoviral vectors suitable for treatment of various gynecologic cancer types, describing the development of the field from non-replicating adenoviral vectors to multiple-modified conditional replicating viruses. Transcriptional targeting of gynecologic cancer cells by the use of the promoter of vascular endothelial growth factor receptor type 1 (flt-1) was evaluated. Flt-1 is not expressed in the liver and thus an ideal promoter for transcriptional targeting of adenoviruses. Our studies implied that the flt-1 promoter is active in teratocarcinomas.and therefore a good candidate for development of oncolytic adenoviruses for treatment of this often problematic disease with then poor outcome. A tropism modified conditionally replicating adenovirus (CRAd), Ad5-Δ24RGD, was studied in gynecologic cancers. Ad5-Δ24RGD is an adenovirus selectively replication competent in cells defective in the p16/Rb pathway, including many or most tumor cells. The fiber of Ad5-Δ24RGD contains an integrin binding arginine-glycine-aspartic acid motif (RGD-4C), allowing coxackie-adenovirus receptor independent infection of cancer cells. This approach is attractive because expression levels of CAR are highly variable and often low on primary gynecological cancer cells. Oncolysis could be shown for a wide variety of ovarian and cervical cancer cell lines as well as primary ovarian cancer cell spheroids, a novel system developed for in vitro analysis of CRAds on primary tumor substrates. Biodistribution was evaluated and preclinical safety data was obtained by demonstrating lack of replication in human peripheral blood mononuclear cells. The efficicacy of Ad5-Δ24RGD was shown in different orthotopic murine models including a highly aggressive intraperitoneal model of disseminated ovarian cancer cells, where Ad5-Δ24RGD resulted in complete eradication of intraperitoneal disease in half of the mice. To further improve the selectivity and specificity of CRAds, triple-targeted oncolytic adenoviruses were cloned, featuring the cyclo-oxygenase-2 (cox-2) promoter, E1A transcomplementation and serotype chimerism. Those viruses were evaluated on ovarian cancer cells for specificity and oncolytic potency with regard to two different cox2 versions and three different variants of E1A (wild type, delta24 and delta2delta24). Ad5/3cox2Ld24 emerged as the best combination due to enhanced selectivity without potency lost in vitro or in an aggressive intraperitoneal orthotopic ovarian tumor model. In summary, the preclinical therapeutic efficacy of the CRAds tested in this study, taken together with promising biodistribution and safety data, suggest that these CRAds are interesting candidates for translation into clinical trials for gynecologic cancer.