822 resultados para insulin aspart


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Store-operated Ca(2+) channels (SOCs) are voltage-independent Ca(2+) channels activated upon depletion of the endoplasmic reticulum Ca(2+) stores. Early studies suggest the contribution of such channels to Ca(2+) homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca(2+) depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca(2+) imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca(2+) entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18-20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trying to define the precise role played by insulin regulating the survival of brown adipocytes, we have used rat fetal brown adipocytes maintained in primary culture. The effect of insulin on apoptosis and the mechanisms involved were assessed. Different from the known effects of insulin as a survival factor, we have found that long-term treatment (72 h) with insulin induces apoptosis in rat fetal brown adipocytes. This process is dependent on the phosphatidylinositol 3-kinase/mammalian target of rapamycin/p70 S6 kinase pathway. Short-term treatment with the conditioned medium from brown adipocytes treated with insulin for 72 h mimicked the apoptotic effect of insulin. During the process, caspase 8 activation, Bid cleavage, cytochrome c release, and activation of caspases 9 and 3 are sequentially produced. Treatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), prevents activation of this apoptotic cascade. The antioxidants, ascorbic acid and superoxide dismutase, also impair this process of apoptosis. Moreover, generation of reactive oxygen species (ROS), probably through reduced nicotinamide adenine dinucleotide phosphate oxidases, and a late decrease in reduced glutathione content are produced. According to this, antioxidants prevent caspase 8 activation and Bid cleavage, suggesting that ROS production is an important event mediating this process of apoptosis. However, the participation of uncoupling protein-1, -2, and -3 regulating ROS is unclear because their levels remain unchanged upon insulin treatment for 72 h. Our data suggest that the prolonged hyperinsulinemia might cause insulin resistance through the loss of brown adipose tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the common carp to diets with varying amounts of digestible starch, provided either as pea meal (LP, HP, 30 and 46% peas, respectively) or as cereal (LW, HW, 30 and 46% wheat, respectively), was studied and compared with the response to a carbohydrate-free protein-rich diet (CF). Here we focused on the utilisation of dietary carbohydrates by examining the relationship between dietary starch intake, hepatic hexokinase activities, circulating insulin and muscle insulin receptor system. Plasma glucose concentration and hepatic high Km hexokinase (glucokinase, GK) activity were not affected by the content of digestible starch, but 6 h after feeding enzyme activity was higher in the fish fed carbohydrate diets. Similarly, low Km hexokinase (HK) activity was also higher in the fish 24 h after feeding. Fat gain and protein retention were significantly improved by increased digestible starch intake, especially in the HP group, which in turn, presented the highest plasma insulin levels. Glycogen stores were moderately increased by the ingestion of digestible starch. The number of insulin receptors was greater in the CF group than in fish on carbohydrates, except the HP group. Our results confirmed that the common carp uses dietary carbohydrates efficiently, especially when there are provided by peas. This efficiency might be related to the enhanced response of postprandial insulin observed in the HP group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic syndrome (MetS) is a disease composed of different risk factors such as obesity, type 2 diabetes or dyslipidemia. The prevalence of this syndrome is increasing worldwide in parallel with the rise in obesity. Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in western countries, affecting more than 30% of the general population. NAFLD encompasses a spectrum of liver manifestations ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which may ultimately progress to hepatocellular carcinoma. There is accumulating evidence supporting an association between NAFLD and MetS. Indeed, NAFLD is recognized as the liver manifestation of MetS. Insulin resistance is increasingly recognized as a key factor linking MetS and NAFLD. Insulin resistance is associated with excessive fat accumulation in ectopic tissues, such as the liver, and increased circulating free fatty acids, which can further promote inflammation and endoplasmic reticulum stress. This in turn aggravates and maintains the insulin resistant state, constituting a vicious cycle. Importantly, evidence shows that most of the patients developing NAFLD present at least one of the MetS traits. This review will define MetS and NAFLD, provide an overview of the common pathophysiological mechanisms linking MetS and NAFLD, and give a perspective regarding treatment of these ever growing metabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4R24C). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Chronic, exaggerated, glycemic excursions could lead to cardiovascular diseases, nephropathy, neuropathy and retinopathy. We recently showed that hypoglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression was modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we identify by gene set enrichment analysis, three important pathways, including lysosomal function, GSH metabolism and apoptotic pathways. Then we tested the effect of recurrent hypoglycemia (three successive 4h periods of hypoglycemia spaced by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevented GSH decrease and retinal cell death, or adapted the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining "normal" GSH level, as well as a strict glycemic control, represents a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptation of organisms to ever-changing nutritional environments relies on sensor tissues and systemic signals. Identification of these signals would help understand the physiological crosstalk between organs contributing to growth and metabolic homeostasis. Here we show that Eiger, the Drosophila TNF-α, is a metabolic hormone that mediates nutrient response by remotely acting on insulin-producing cells (IPCs). In the condition of nutrient shortage, a metalloprotease of the TNF-α converting enzyme (TACE) family is active in fat body (adipose-like) cells, allowing the cleavage and release of adipose Eiger in the hemolymph. In the brain IPCs, Eiger activates its receptor Grindelwald, leading to JNK-dependent inhibition of insulin production. Therefore, we have identified a humoral connexion between the fat body and the brain insulin-producing cells relying on TNF-α that mediates adaptive response to nutrient deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aimed to quantify the concentrations of free IGF-I in serum and fluid of ovarian follicles in pre-pubertal gilts and describe the ovarian morphology by measuring the size of the ovaries and counting the number of surface follicles. Ovaries (n=1,000) from pre-pubertal gilts were obtained immediately after slaughter. A total of 10 samplings were performed, with ovaries obtained from 50 females for each collection. The follicles situated on the surface of each ovary were classified as small (SFs, 2 to 5mm in diameter) or large (LFs 6 to 10mm in diameter) and the follicular fluid was obtained by follicle aspiration. The collection of serum samples was performed after the gilts exsanguination using sterile tubes. From the pool of serum and follicular fluid obtained from 50 females, the concentration of free IGF-I was determined in each sample using an enzyme immunoassay kit (ELISA). The description of ovarian morphometry was performed in 100 ovaries from randomly selected gilts. The larger and smaller lengths of ovaries were measured, and the total number of SFs and LFs present on the surface of each ovary were also counted. The IGF-I concentration was greater (P<0.05) in LFs (170.92±88.29 ng/mL) compared with SFs (67.39±49.90ng/mL) and serum (73.48±34.63ng/mL). The largest and smallest length of the ovaries was 26.0±3.0 and 19.0mm ±2.0mm, respectively. The number of SFs (70.86±25.76) was greater (P<0.01) than LFs (6.54±5.26). The study concluded that LFs present greater levels of IGF-I when compared with SFs and blood, which is related to increased activity of the LFs and its differentiation to ovulation. In addition, ovaries of pre-pubertal gilts have a higher number of SFs compared to LFs. Therefore, our study demonstrated unique data regarding the physiological concentration of free IGF-I in ovarian follicles, that can be used in future research to evaluate the addition of this hormone in the in vitro production media of porcine embryos with the goal to improve the technique efficiency.