948 resultados para information sciences
Resumo:
Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.
Resumo:
This paper proposes a filter-based algorithm for feature selection. The filter is based on the partitioning of the set of features into clusters. The number of clusters, and consequently the cardinality of the subset of selected features, is automatically estimated from data. The computational complexity of the proposed algorithm is also investigated. A variant of this filter that considers feature-class correlations is also proposed for classification problems. Empirical results involving ten datasets illustrate the performance of the developed algorithm, which in general has obtained competitive results in terms of classification accuracy when compared to state of the art algorithms that find clusters of features. We show that, if computational efficiency is an important issue, then the proposed filter May be preferred over their counterparts, thus becoming eligible to join a pool of feature selection algorithms to be used in practice. As an additional contribution of this work, a theoretical framework is used to formally analyze some properties of feature selection methods that rely on finding clusters of features. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
An important feature of a database management systems (DBMS) is its client/server architecture, where managing shared memory among the clients and the server is always an tough issue. However, similarity queries are specially sensitive to this kind of architecture, since the answer sizes vary widely. Usually, the answers of similarity query are fully processed to be sent in full to the user, who often is interested in just parts of the answer, e.g. just few elements closer or farther to the query reference. Compelling the DBMS to retrieve the full answer, further ignoring its majority is at least a waste of server processing power. Paging the answer is a technique that splits the answer onto several pages, following client requests. Despite the success of paging on traditional queries, little work has been done to support it in similarity queries. In this work, we present a technique that not only provides paging in similarity range or k-nearest neighbor queries, but also supports them in two variations: the forward similarity query and the backward similarity query. They return elements either increasingly farther of increasingly closer to the query reference. The reported experiments show that, depending on the proportion of the interesting part over the full answer, both techniques allow answering queries much faster than it is obtained in the non-paged way. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A conceptual problem that appears in different contexts of clustering analysis is that of measuring the degree of compatibility between two sequences of numbers. This problem is usually addressed by means of numerical indexes referred to as sequence correlation indexes. This paper elaborates on why some specific sequence correlation indexes may not be good choices depending on the application scenario in hand. A variant of the Product-Moment correlation coefficient and a weighted formulation for the Goodman-Kruskal and Kendall`s indexes are derived that may be more appropriate for some particular application scenarios. The proposed and existing indexes are analyzed from different perspectives, such as their sensitivity to the ranks and magnitudes of the sequences under evaluation, among other relevant aspects of the problem. The results help suggesting scenarios within the context of clustering analysis that are possibly more appropriate for the application of each index. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aspect-oriented programming (AOP) is a promising technology that supports separation of crosscutting concerns (i.e., functionality that tends to be tangled with, and scattered through the rest of the system). In AOP, a method-like construct named advice is applied to join points in the system through a special construct named pointcut. This mechanism supports the modularization of crosscutting behavior; however, since the added interactions are not explicit in the source code, it is hard to ensure their correctness. To tackle this problem, this paper presents a rigorous coverage analysis approach to ensure exercising the logic of each advice - statements, branches, and def-use pairs - at each affected join point. To make this analysis possible, a structural model based on Java bytecode - called PointCut-based Del-Use Graph (PCDU) - is proposed, along with three integration testing criteria. Theoretical, empirical, and exploratory studies involving 12 aspect-oriented programs and several fault examples present evidence of the feasibility and effectiveness of the proposed approach. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Automatic summarization of texts is now crucial for several information retrieval tasks owing to the huge amount of information available in digital media, which has increased the demand for simple, language-independent extractive summarization strategies. In this paper, we employ concepts and metrics of complex networks to select sentences for an extractive summary. The graph or network representing one piece of text consists of nodes corresponding to sentences, while edges connect sentences that share common meaningful nouns. Because various metrics could be used, we developed a set of 14 summarizers, generically referred to as CN-Summ, employing network concepts such as node degree, length of shortest paths, d-rings and k-cores. An additional summarizer was created which selects the highest ranked sentences in the 14 systems, as in a voting system. When applied to a corpus of Brazilian Portuguese texts, some CN-Summ versions performed better than summarizers that do not employ deep linguistic knowledge, with results comparable to state-of-the-art summarizers based on expensive linguistic resources. The use of complex networks to represent texts appears therefore as suitable for automatic summarization, consistent with the belief that the metrics of such networks may capture important text features. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This article discusses methods to identify plants by analysing leaf complexity based on estimating their fractal dimension. Leaves were analyzed according to the complexity of their internal and external shapes. A computational program was developed to process, analyze and extract the features of leaf images, thereby allowing for automatic plant identification. Results are presented from two experiments, the first to identify plant species from the Brazilian Atlantic forest and Brazilian Cerrado scrublands, using fifty leaf samples from ten different species, and the second to identify four different species from genus Passiflora, using twenty leaf samples for each class. A comparison is made of two methods to estimate fractal dimension (box-counting and multiscale Minkowski). The results are discussed to determine the best approach to analyze shape complexity based on the performance of the technique, when estimating fractal dimension and identifying plants. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The widespread use of service-oriented architectures (SOAs) and Web services in commercial software requires the adoption of development techniques to ensure the quality of Web services. Testing techniques and tools concern quality and play a critical role in accomplishing quality of SOA based systems. Existing techniques and tools for traditional systems are not appropriate to these new systems, making the development of Web services testing techniques and tools required. This article presents new testing techniques to automatically generate a set of test cases and data for Web services. The techniques presented here explore data perturbation of Web services messages upon data types, integrity and consistency. To support these techniques, a tool (GenAutoWS) was developed and applied to real problems. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The problems of finding best facility locations require complete and accurate road network with the corresponding population data in a specific area. However the data obtained in road network databases usually do not fit in this usage. In this paper we propose our procedure of converting the road network database to a road graph which could be used in localization problems. The road network data come from the National road data base in Sweden. The graph derived is cleaned, and reduced to a suitable level for localization problems. The population points are also processed in ordered to match with that graph. The reduction of the graph is done maintaining most of the accuracy for distance measures in the network.
Resumo:
Background: A test battery consisting of self-assessments and motor tests (tapping and spiral drawing) was developed for a hand computer with touch screen in a telemedicine setting. Objectives: To develop and evaluate a web-based system that delivers decision support information to the treating clinical staff for assessing PD symptoms in their patients based on the test battery data. Methods: The test battery is currently being used in a clinical trial (DAPHNE, EudraCT No. 2005-002654-21) by sixty five patients with advanced Parkinson’s disease (PD) on 9991 test occasions (four tests per day during in all 362 week-long test periods) at nine clinics around Sweden. Test results are sent continuously from the hand unit over a mobile net to a central computer and processed with statistical methods. They are summarized into scores for different dimensions of the symptom state and an ‘overall test score’ reflecting the overall condition of the patient during a test period. The information in the web application is organized and presented graphically in a way that the general overview of the patient performance per test period is emphasized. Focus is on the overall test score, symptom dimensions and daily summaries. In a recent preliminary user evaluation, the web application was demonstrated to the fifteen study nurses who had used the test battery in the clinical trial. At least one patient per clinic was shown. Results: In general, the responses from nurses were positive. They claimed that the test results shown in the system were consistent with their own clinical observations. They could follow complications, changes and trends within their patients. Discussion: In conclusion, the system is able to summarise the various time series of motor test results and self-assessments during test periods and present them in a useful manner. Its main contribution is a novel and reliable way to capture and easily access symptom information from patients’ home environment. The convenient access to current symptom profile as well as symptom history provides a basis for individualized evaluation and adjustment of treatments.
Resumo:
Background: A mobile device test battery, consisting of a patient diary collection section with disease-related questions and a fine motor test section (including spiral drawing tasks), was used by 65 patients with advanced Parkinson's disease (PD)(treated with intraduodenal levodopa/carbidopa gel infusion, Duodopa®, or candidates for this treatment) on 10439 test occasions in their home environments. On each occasion, patients traced three pre-drawn Archimedes spirals using an ergonomic stylus and self-assessed their motor function on a global Treatment Response Scale (TRS) ranging from -3 = very 'off' to 0 = 'on' to +3 = very dyskinetic. The spirals were processed by a computer-based method that generates a "spiral score" representing the PD-related drawing impairment. The scale for the score was based on a modified Bain & Findley rating scale in the range from 0 = no impairment to 5 = moderate impairment to 10 = extremely severe impairment. Objective: To analyze the test battery data for the purpose to find differences in spiral drawing performance of PD patients in relation to their self-assessments of motor function. Methods: Three motor states were used in the analysis; OFF state (including moderate and very 'off'), ON state ('on') and a dyskinetic (DYS) state (moderate and very dyskinetic). In order to avoid the problem of multiple test occasions per patient, 200 random samples of single test occasions per patient were drawn. One-way analysis of variance, ANOVA, test followed by Tukey multiple comparisons test was used to test if mean values of spiral test parameters, i.e. the spiral score and drawing completion times (in seconds), were different among the three motor states. Statistical significance was set at p<0.05. To investigate changes in the spiral score over the time-of-day test sessions for the three motor states, plots of statistical summaries were inspected. Results: The mean spiral score differed significantly across the three self-assessed motor states (p<0.001, ANOVA test). Tukey post-hoc comparisons indicate that the mean spiral score (mean ± SD; [95% CI for mean]) in DYS state (5.2 ± 1.8; [5.12, 5.28]) was higher than the mean spiral score in OFF (4.3 ± 1.7; [4.22, 4.37]) and ON (4.2 ± 1.7; [4.17, 4.29]) states. The mean spiral score was also significantly different among individual TRS values of slightly 'off' (4.02 ± 1.63), 'on' (4.07 ± 1.65) and slightly dyskinetic (4.6 ± 1.71), (p<0.001). There were no differences in drawing completion times among the three motor states (p=0.509). In the OFF and ON states, patients drew slightly more impaired spirals in the afternoon whereas in the DYS state the spiral drawing performance was more impaired in the morning. Conclusion: It was found that when patients considered themselves as being dyskinetic spiral drawing was more impaired (nearly one unit change in a 0-10 scale) compared to when they considered themselves as being 'off' and 'on'. The spiral drawing at patients that self-assessed their motor state as dyskinetic was slightly more impaired in the morning hours, between 8 and 12 o'clock, a situation possibly caused by the morning dose effect.
Resumo:
The thesis aims to elaborate on the optimum trigger speed for Vehicle Activated Signs (VAS) and to study the effectiveness of VAS trigger speed on drivers’ behaviour. Vehicle activated signs (VAS) are speed warning signs that are activated by individual vehicle when the driver exceeds a speed threshold. The threshold, which triggers the VAS, is commonly based on a driver speed, and accordingly, is called a trigger speed. At present, the trigger speed activating the VAS is usually set to a constant value and does not consider the fact that an optimal trigger speed might exist. The optimal trigger speed significantly impacts driver behaviour. In order to be able to fulfil the aims of this thesis, systematic vehicle speed data were collected from field experiments that utilized Doppler radar. Further calibration methods for the radar used in the experiment have been developed and evaluated to provide accurate data for the experiment. The calibration method was bidirectional; consisting of data cleaning and data reconstruction. The data cleaning calibration had a superior performance than the calibration based on the reconstructed data. To study the effectiveness of trigger speed on driver behaviour, the collected data were analysed by both descriptive and inferential statistics. Both descriptive and inferential statistics showed that the change in trigger speed had an effect on vehicle mean speed and on vehicle standard deviation of the mean speed. When the trigger speed was set near the speed limit, the standard deviation was high. Therefore, the choice of trigger speed cannot be based solely on the speed limit at the proposed VAS location. The optimal trigger speeds for VAS were not considered in previous studies. As well, the relationship between the trigger value and its consequences under different conditions were not clearly stated. The finding from this thesis is that the optimal trigger speed should be primarily based on lowering the standard deviation rather than lowering the mean speed of vehicles. Furthermore, the optimal trigger speed should be set near the 85th percentile speed, with the goal of lowering the standard deviation.