897 resultados para influence of fine lactose on dispersion
Resumo:
Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.
Resumo:
A numerical study has been carried out to investigate the influence of large-scale thermal effects and strong local-scale temperature gradients near the ground on the circulation inside a street canyon. The results show that the dynamical forcing dominates the circulation inside a street canyon. But this forcing is influenced by the large-scale thermal stability. Thus, atmospheric stability indirectly controls the street canyon circulation. Small temperature gradients inside the street-canyon are neutralised by the external dynamical forcing. Strong temperature gradients inside the street-canyon show an impact on the street canyon circulation. While stable stratification reduces the circulation for the building configuration investigated, convective stratification seems to intensify it.
Resumo:
The influence of charge and aromatic stacking interactions on the self-assembly of a series of four model amyloid peptides has been examined. The four model peptides are based on the KLVFF motif from the amyloid Beta peptide, ABeta(16-20) extended at the N terminus with two Beta-alanine residues. We have studied NH2-BetaABetaAKLVFF-COOH (FF), NH2-BetaABetaAKLVFCOOH (F), CH3CONH-BetaABetaAKLVFF-CONH2 (CapF), and CH3CONH-BetaABetaAKLVFFCONH2 (CapFF). The former two are uncapped (net charge plus 2) and differ by one hydrophobic phenylalanine residue; the latter two are the analogous capped peptides (net charge plus 1). The self-assembly characteristics of these peptides are remarkably different and strongly dependent on concentration. NMR shows a shift from carboxylate to carboxylic acid forms upon increasing concentration. Saturation transfer measurements of solvent molecules indicate selective involvement of phenylalanine residues in driving the self-assembly process of CapFF due presumably to the effect of aromatic stacking interactions. FTIR spectroscopy reveals beta-sheet features for the two peptides containing two phenylalanine residues but not the single phenylalanine residue, pointing again to the driving force for self-assembly. Circular dichroism (CD) in dilute solution reveals the polyproline II conformation, except for F which is disordered. We discuss the relationship of this observation to the significant pH shift observed for this peptide when compared the calculated value. Atomic force microscopy and cryogenic-TEM reveals the formation of twisted fibrils for CapFF, as previously also observed for FF. The influence of salt on the self-assembly of the model beta-sheet forming capped peptide CapFF was investigated by FTIR. Cryo-TEM reveals that the extent of twisting decreases with increased salt concentration, leading to the formation of flat ribbon structures. These results highlight the important role of aggregation-induced pKa shifts in the self-assembly of model beta-sheet peptides.
Resumo:
To fully appreciate the environmental impact of an office building, the transport-related carbon dioxide (CO2) emissions resulting from its location should be considered in addition to the emissions that result from the operation of the building itself. Travel-related CO2 emissions are a function of three criteria, two of which are influenced by physical location and one of which is a function of business practice. The two spatial criteria are, first, the location of the office relative to the location of the workforce, the market, complementary business activities (and the agglomeration benefits this offers) and, second, the availability and cost of transport modes. The business criterion is the need for, and therefore frequency of, visits and this, in turn, depends on the requirement for a physically present workforce and face-to-face contact with clients. This paper examines the commuting-related CO2 emissions that result from city centre and out-of-town office locations. Using 2001 Census Special Workplace Statistics which record people’s residence, usual workplace and mode of transport between them, distance travelled and mode of travel were calculated for a sample of city centre and out-of-town office locations. The results reveal the extent of the difference between transport-related CO2 emitted by commuters to out-of-town and city centre locations. The implications that these findings have for monitoring the environmental performance of offices are discussed.
Resumo:
The transport of the Antarctic Circumpolar Current (ACC) varies strongly across the coupled GCMs (general circulation models) used for the IPCC AR4. This note shows that a large fraction of this across-model variance can be explained by relating it to the parameterization of eddy-induced transports. In the majority of models this parameterization is based on the study by Gent and McWilliams (1990). The main parameter is the quasi-Stokes diffusivity kappa (often referred to less accurately as ’’thickness diffusion’’). The ACC transport and the meridional density gradient both correlate strongly with kappa across those models where kappa is a prescribed constant. In contrast, there is no correlation with the isopycnal diffusivity jiso across the models. The sensitivity of the ACC transport to kappa is larger than to the zonal wind stress maximum. Experiments with the fast GCM FAMOUS show that changing kappa directly affects the ACC transport by changing the density structure throughout the water column. Our results suggest that this limits the role of the wind stress magnitude in setting the ACC transport in FAMOUS. The sensitivities of the ACC and the meridional density gradient are very similar across the AR4 GCMs (for those models where kappa is a prescribed constant) and among the FAMOUS experiments. The strong sensitivity of the ACC transport to kappa needs careful assessment in climate models.
Resumo:
Background: The surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG. Results: The cells were grown at pH 5, 5.5, 6 (temperature 37 °C) and at pH 6.5 (temperature 25 °C, 30 °C and 37 °C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37 oC). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however. Conclusions: The temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.
Resumo:
A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.
Resumo:
The variation of stratospheric equatorial wave characteristics with the phase of the quasi-biennial oscillation (QBO) is investigated using ECMWF Re-Analysis and NOAA outgoing longwave radiation (OLR) data. The impact of the QBO phases on the upward propagation of equatorial waves is found to be consistent and significant. In the easterly phase, there is larger Kelvin wave amplitude but smaller westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave amplitude due to reduced propagation from the upper troposphere into the lower stratosphere, compared with the westerly phase. Differences in the wave amplitude exist in a deeper layer in summer than in winter, consistent with the seasonality of ambient zonal winds. There is a strong evidence of Kelvin wave amplitude peaking just below the descending westerly phase, suggesting that Kelvin waves act to bring the westerly phase downward. However, the corresponding evidence for WMRG and R1 waves is less clear. In the lower stratosphere there is zonal variation in equatorial waves. This reflects the zonal asymmetry of wave amplitudes in the upper troposphere, the source for the lower-stratospheric waves. In easterly winters the upper-tropospheric WMRG and R1 waves over the eastern Pacific region appear to be somewhat stronger compared to climatology, perhaps because of the accumulation of waves that are unable to propagate upward into the lower stratosphere. Vertical propagation features of these waves are generally consistent with theory and suggest a mixture of Doppler shifting by ambient flows and filtering. Some lower-stratosphere equatorial waves have a connection with preceding tropical convection, especially for Kelvin and R1 waves in winter.
Resumo:
The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.
Resumo:
Historical events are interpreted by collectivities in ways that are then instrumentalised in policy-making processes. This creates mythical "truths" and "rules of conduct" which in 20th (21st) century Western civilisations are not much different from those of pre-Enlightenment societies.
Resumo:
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target.
Resumo:
The beneficial effects of cocoa on vascular function are mediated by the absorption of monomeric flavanols into the circulation from the small intestine. As such, an understanding of the impact of the food matrix on the delivery of flavanols to the circulation is critical in assessing the potential vascular impact of a food. In the present study, we investigated the impact of carbohydrate type on flavanol absorption and metabolism from chocolate. A randomised, double-blind, three-arm cross-over study was conducted, where fifteen volunteers were randomly assigned to either a high-flavanol (266 mg) chocolate containing maltitol, a high-flavanol (251 mg) chocolate with sucrose or a low-flavanol (48 mg) chocolate with sucrose. Test chocolates were matched for micro- and macronutrients, including the alkaloids theobromine and caffeine, and were similar in taste and appearance. Total flavanol absorption was lower after consumption of the maltitol-containing test chocolate compared with following consumption of its sucrose-containing equivalent (P = 0·002). Although the O-methylation pattern observed for absorbed flavanols was unaffected by sugar type, individual levels of unmethylated ( - )-epicatechin metabolites, 3'-O-methyl-epicatechin and 4'-O-methyl-epicatechin metabolites were lower for the maltitol-containing test chocolate compared with the sucrose-containing equivalent. Despite a reduction in the total plasma pool of flavanols, the maximum time (T max) was unaffected. The present data indicate that full assessment of intervention treatments is vital in future intervention trials with flavanols and that carbohydrate content is an important determinant for the optimal delivery of flavanols to the circulation.