991 resultados para improved pasture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 1200 wheat and 120 barley experiments conducted in Australia to examine yield responses to applied nitrogen (N) fertiliser are contained in a national database of field crops nutrient research (BFDC National Database). The yield responses are accompanied by various pre-plant soil test data to quantify plant-available N and other indicators of soil fertility status or mineralisable N. A web application (BFDC Interrogator), developed to access the database, enables construction of calibrations between relative crop yield ((Y0/Ymax) × 100) and N soil test value. In this paper we report the critical soil test values for 90% RY (CV90) and the associated critical ranges (CR90, defined as the 70% confidence interval around that CV90) derived from analysis of various subsets of these winter cereal experiments. Experimental programs were conducted throughout Australia’s main grain-production regions in different eras, starting from the 1960s in Queensland through to Victoria during 2000s. Improved management practices adopted during the period were reflected in increasing potential yields with research era, increasing from an average Ymax of 2.2 t/ha in Queensland in the 1960s and 1970s, to 3.4 t/ha in South Australia (SA) in the 1980s, to 4.3 t/ha in New South Wales (NSW) in the 1990s, and 4.2 t/ha in Victoria in the 2000s. Various sampling depths (0.1–1.2 m) and methods of quantifying available N (nitrate-N or mineral-N) from pre-planting soil samples were used and provided useful guides to the need for supplementary N. The most regionally consistent relationships were established using nitrate-N (kg/ha) in the top 0.6 m of the soil profile, with regional and seasonal variation in CV90 largely accounted for through impacts on experimental Ymax. The CV90 for nitrate-N within the top 0.6 m of the soil profile for wheat crops increased from 36 to 110 kg nitrate-N/ha as Ymax increased over the range 1 to >5 t/ha. Apparent variation in CV90 with seasonal moisture availability was entirely consistent with impacts on experimental Ymax. Further analyses of wheat trials with available grain protein (~45% of all experiments) established that grain yield and not grain N content was the major driver of crop N demand and CV90. Subsets of data explored the impact of crop management practices such as crop rotation or fallow length on both pre-planting profile mineral-N and CV90. Analyses showed that while management practices influenced profile mineral-N at planting and the likelihood and size of yield response to applied N fertiliser, they had no significant impact on CV90. A level of risk is involved with the use of pre-plant testing to determine the need for supplementary N application in all Australian dryland systems. In southern and western regions, where crop performance is based almost entirely on in-crop rainfall, this risk is offset by the management opportunity to split N applications during crop growth in response to changing crop yield potential. In northern cropping systems, where stored soil moisture at sowing is indicative of minimum yield potential, erratic winter rainfall increases uncertainty about actual yield potential as well as reducing the opportunity for effective in-season applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zebu (Bos indicus) crossbred beef cows (Droughtmaster) were maintained long-term (16 months) on standard nutrition (SN) or improved nutrition (IN). Cows on IN had better body condition and greater (P<0.05) circulating concentrations of leptin than cows on SN (0.7±0.1n/ml and 1.7±0.1n/ml, respectively). There were no outstanding differences between SN and IN cows in basal number of ovarian follicles (≤4mm, 5-8mm, and≥9mm) and there were also no differences in number of oocytes recovered by oocyte pick-up. Cows on IN had a greater (P<0.05) number of total follicles after stimulation with FSH than cows on SN. Oocytes from cows on IN had greater (P<0.05) lipid content than cows on SN (-0.23±0.16 and 0.20±0.18 arbitrary units, respectively) and oocytes of the former cows also tended to have more active mitochondria, although this was not significant. Cows on IN showed a positive relationship (R2=0.31, P<0.05) between plasma leptin and oocyte lipid content. Lipids are utilized by oocytes during high energy consumptive processes including fertilization and early cleavage. The greater lipid content of oocytes from IN cows could therefore confer a reproductive advantage. The present study has shown relationships between nutrition, body condition, circulating leptin, and oocyte lipid content, but a clear cause-and-effect requires further investigation in the cow. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historical stocking methods of continuous, season-long grazing of pastures with little account of growing conditions have caused some degradation within grazed landscapes in northern Australia. Alternative stocking methods have been implemented to address this degradation and raise the productivity and profitability of the principal livestock, cattle. Because information comparing stocking methods is limited, an evaluation was undertaken to quantify the effects of stocking methods on pastures, soils and grazing capacity. The approach was to monitor existing stocking methods on nine commercial beef properties in north and south Queensland. Environments included native and exotic pastures and eucalypt (lighter soil) and brigalow (heavier soil) land types. Breeding and growing cattle were grazed under each method. The owners/managers, formally trained in pasture and grazing management, made all management decisions affecting the study sites. Three stocking methods were compared: continuous (with rest), extensive rotation and intensive rotation (commonly referred to as 'cell grazing'). There were two or three stocking methods examined on each property: in total 21 methods (seven continuous, six extensive rotations and eight intensive rotations) were monitored over 74 paddocks, between 2006 and 2009. Pasture and soil surface measurements were made in the autumns of 2006, 2007 and 2009, while the paddock grazing was analysed from property records for the period from 2006 to 2009. The first 2 years had drought conditions (rainfall average 3.4 decile) but were followed by 2 years of above-average rainfall. There were no consistent differences between stocking methods across all sites over the 4 years for herbage mass, plant species composition, total and litter cover, or landscape function analysis (LFA) indices. There were large responses to rainfall in the last 2 years with mean herbage mass in the autumn increasing from 1970 kg DM ha(-1) in 2006-07 to 3830 kg DM ha(-1) in 2009. Over the same period, ground and litter cover and LFA indices increased. Across all sites and 4 years, mean grazing capacity was similar for the three stocking methods. There were, however, significant differences in grazing capacity between stocking methods at four sites but these differences were not consistent between stocking methods or sites. Both the continuous and intensive rotation methods supported the highest average annual grazing capacity at different sites. The results suggest that cattle producers can obtain similar ecological responses and carry similar numbers of livestock under any of the three stocking methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns about excessive sediment loads entering the Great Barrier Reef (GBR) lagoon in Australia have led to a focus on improving ground cover in grazing lands. Ground cover has been identified as an important factor in reducing sediment loads, but improving ground cover has been difficult for reef stakeholders in major catchments of the GBR. To provide better information an optimising linear programming model based on paddock scale information in conjunction with land type mapping was developed for the Fitzroy, the largest of the GBR catchments. This identifies at a catchment scale which land types allow the most sediment reduction to be achieved at least cost. The results suggest that from the five land types modelled, the lower productivity land types present the cheapest option for sediment reductions. The study allows more informed decision making for natural resource management organisations to target investments. The analysis highlights the importance of efficient allocation of natural resource management funds in achieving sediment reductions through targeted land type investments. © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high proportion of the Australian and New Zealand dairy industry is based on a relatively simple, low input and low cost pasture feedbase. These factors enable this type of production system to remain internationally competitive. However, a key limitation of pasture-based dairy systems is periodic imbalances between herd intake requirements and pasture DM production, caused by strong seasonality and high inter-annual variation in feed supply. This disparity can be moderated to a certain degree through the strategic management of the herd through altering calving dates and stocking rates, and the feedbase by conserving excess forage and irrigating to flatten seasonal forage availability. Australasian dairy systems are experiencing emerging market and environmental challenges, which includes increased competition for land and water resources, decreasing terms of trade, a changing and variable climate, an increasing environmental focus that requires improved nutrient and water-use efficiency and lower greenhouse gas emissions. The integration of complementary forages has long been viewed as a means to manipulate the home-grown feed supply, to improve the nutritive value and DM intake of the diet, and to increase the efficiency of inputs utilised. Only recently has integrating complementary forages at the whole-farm system level received the significant attention and investment required to examine their potential benefit. Recent whole-of-farm research undertaken in both Australia and New Zealand has highlighted the importance of understanding the challenges of the current feedbase and the level of complementarity between forage types required to improve profit, manage risk and/or alleviate/mitigate against adverse outcomes. This paper reviews the most recent systems-level research into complementary forages, discusses approaches to modelling their integration at the whole-farm level and highlights the potential of complementary forages to address the major challenges currently facing pasture-based dairy systems.