999 resultados para hydroxyapatite nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonic interactions in a well-defined array of metallic nanoparticles can lead to interesting optical effects, such as local electric field enhancement and shifts in the extinction spectra, which are of interest in diverse technological applications, including those pertaining to biochemical sensing and photonic circuitry. Here, we report on a single-step wafer scale fabrication of a three-dimensional array of metallic nanoparticles whose sizes and separations can be easily controlled to be anywhere between fifty to a few hundred nanometers, allowing the optical response of the system to be tailored with great control in the visible region of the spectrum. The substrates, apart from having a large surface area, are inherently porous and therefore suitable for optical sensing applications, such as surface enhanced Raman scattering, containing a high density of spots with enhanced local electric fields arising from plasmonic couplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a hybrid synthetic protocol, the solvated metal atom dispersion (SMAD) method, for the synthesis and stabilization of monodisperse amorphous cobalt nanoparticles. By employing an optimized ratio of a weakly coordinating solvent and a capping agent monodisperse colloidal cobalt nanoparticles (2 +/- 0.5 nm) have been prepared by the SMAD method. However, the as-prepared samples were found to be oxidatively unstable which was elucidated by their magnetic studies. Oxidative stability in our case was achieved via a pyrolysis process that led to the decomposition of the organic solvent and the capping agent resulting in the formation of carbon encapsulated cobalt nanoparticles which was confirmed by Raman spectroscopy. Controlled annealing at different temperatures led to the phase transformation of metallic cobalt from the hcp to fcc phase. The magnetic behaviour varies with the phase and the particle size; especially, the coercivity of nanoparticles exhibited strong dependence on the phase transformation of cobalt. The high saturation magnetization close to that of the bulk value was achieved in the case of the annealed samples. In addition to detailed structural and morphological characterization, the results of thermal and magnetic studies are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Turkevich-Frens synthesis starting conditions are expanded, ranging the gold salt concentrations up to 2 mM and citrate/gold(III) molar ratios up to 18:1. For each concentration of the initial gold salt solution, the citrate/gold(III) molar ratios are systematically varied from 2:1 to 18:1 and both the size and size distribution of the resulting gold nanoparticles are compared. This study reveals a different nanoparticle size evolution for gold salt solutions ranging below 0.8 mM compared to the case of gold salt solutions above 0.8 mM. In the case of Au3+]<0.8 mM, both the size and size distribution vary substantially with the citrate/gold(III) ratio, both displaying plateaux that evolve inversely to Au3+] at larger ratios. Conversely, for Au3+]>= 0.8 mM, the size and size distribution of the synthesized gold nanoparticles continuously rise as the citrate/gold(III) ratio is increased. A starting gold salt concentration of 0.6 mM leads to the formation of the most monodisperse gold nanoparticles (polydispersity index<0.1) for a wide range of citrate/gold(III) molar ratios (from 4:1 to 18:1). Via a model for the formation of gold nanoparticles by the citrate method, the experimental trends in size could be qualitatively predicted:the simulations showed that the destabilizing effect of increased electrolyte concentration at high initial Au3+] is compensated by a slight increase in zeta potential of gold nanoparticles to produce concentrated dispersion of gold nanoparticles of small sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work demonstrates a novel strategy to synthesize orthogonally bio-engineered magnetonanohybrids (MNPs) through the design of versatile, biocompatible linkers whose structure includes: (i) a robust anchor to bind with metal-oxide surfaces; (ii) tailored surface groups to act as spacers and (iii) a general method to implement orthogonal functionalizations of the substrate via ``click chemistry''. Ligands that possess the synthetic generality of features (i)-(iii) are categorized as ``universal ligands''. Herein, we report the synthesis of a novel, azido-terminated poly(ethylene glycol) (PEG) silane that can easily self-assemble on MNPs through hetero-condensation between surface hydroxyl groups and the silane end of the ligand, and simultaneously provide multiple clickable sites for high density, chemoselective bio-conjugation. To establish the universal-ligand-strategy, we clicked alkyl-functionalized folate onto the surface of PEGylated MNPs. By further integrating a near-infrared fluorescent (NIRF) marker (Alexa-Fluor 647) with MNPs, we demonstrated their folate-receptor mediated internalization inside cancer cells and subsequent translocation into lysosomes and mitochondria. Ex vivo NIRF imaging established that the azido-PEG-silane developed in course of the study can effectively reduce the sequestration of MNPs by macrophage organs (viz. liver and spleen). These folate-PEG-MNPs were not only stealth and noncytotoxic but their dual optical and magnetic properties aided in tracking their whereabouts through combined magnetic resonance and optical imaging. Together, these results provided a strong motivation for the future use of the ``universal ligand'' strategy towards development of ``smart'' nanohybrids for theragnostic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid lubricant nanoparticles in suspension in oil are good lubricating options for practical machinery. In this article, we select a range of dispersants, based on their polar moieties, to suspend 50-nm molybdenum disulfide particles in an industrial base oil. The suspension is used to lubricate a steel on steel sliding contact. A nitrogen-based polymeric dispersant (aminopropyl trimethoxy silane) with a free amine group and an oxygen-based polymeric dispersant (sorbital monooleate) when grafted on the particle charge the particle negatively and yield an agglomerate size which is almost the same as that of the original particle. Lubrication of the contact by these suspensions gives a coefficient of friction in the similar to 0.03 range. The grafting of these surfactants on the particle is shown here to be of a chemical nature and strong as the grafts survive mechanical shear stress in tribology. Such grafts are superior to those of other silane-based test surfactants which have weak functional groups. In the latter case, the particles bereft of strong grafts agglomerate easily in the lubricant and give a coefficient of friction in the 0.08-0.12 range. This article investigates the mechanism of frictional energy dissipation as influenced by the chemistry of the surfactant molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and co-doped (Ag, Co) ZnO powders were synthesized by chemical co-precipitation method without using any capping agent. The X-ray diffraction results indicate that the undoped and co-doped ZnO powders have pure hexagonal structure and are consisting of nanosized single-crystalline particles. The size of the nanoparticles increases with increasing Ag concentration from 1 to 5 mol% as compared to that of undoped ZnO. The presence of substitution dopants of Ag and Co in the ZnO host material was confirmed by the Energy dispersive analysis of X-rays (EDAX). Optical absorption measurements indicate blue shift and red-shift in the absorption band edge upon doping concentration of Ag and blue emission was observed by photoluminescence (PL) studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pursuit of newer and more effective contrast agents for magnetic resonance imaging, we report in this article the use of biocompatible chitosan-coated ferrite nanoparticles of different kinds with a view to determine their potential applications as the contrast agents in the field of nuclear magnetic resonance. The single-phase ferrite particles were synthesized by chemical co-precipitation (CoFe2O4 and Fe3O4) and by applying ultrasonic vibration (CoFe2O4 and Co0.8Zn0.2Fe2O4). Although magnetic anisotropy of CoFe2O4 nanoparticle leads to finite coercivity even for nanoensembles, it has been reduced significantly to a minimum level by applying ultrasonic vibration. Fe3O4 synthesized by chemical co-precipitation yielded particles which already possess negligible coercivity and remanence. Substitution of Co by Zn in CoFe2O4 increases the magnetization significantly with a small increase in coercivity and remanence. Particles synthesized by the application of ultrasonic vibration leads to the higher values of T-2 relaxivities than by chemical coprecipitation. We report that the T-2 relaxivities of these particles are of two orders of magnitude higher than corresponding T-1 relaxivities. Thus, these particles are evidently suitable as contrast agent for T-2 weighted MR images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently nano scale zero valent iron particles (nZVI) have been considered as smart adsorbent for environmental and groundwater remediation. Although several synthetic methods are available for the preparation of nZVI, air stable nZVI are not available for remediation works. Further, challenges demand synthesis of nZVI without stabilizers and capping agents. A modified methodology for the synthesis of air stable nZVI has been developed without any capping agents and characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy Energy-dispersive X-Ray (SEM-EDS), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). The results of the present study suggest that the synthetic nZVI are air-stable over a period of one year and consists of particles of 30-40 nm in diameter. Although a layer of less than 3 am thick oxide/hydroxide is observed by TEM and XPS, it appears to be due to oxidation of outer surface during analysis. Adsorption study has shown that the synthetic nZVI are more effective adsorbent than the commercial nZVI and can remove simultaneously arsenite As-III] and arsenate As-V] from water without prior reduction of As-V to As-III. The removal process is adsorptive rather than precipitative and the removal of As-III is greater than that of As-V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag-Fe nanoparticles with a highly Ag rich average composition were synthesized by the sonochemical route. Silver-iron system exhibits a wide miscibility gap in the bulk materials. Interestingly, a graded compositional profile along the nanoparticle radius was observed. Regions at and near the surface of the nanoparticle contained both Ag and Fe atoms. The composition got relatively deficient Fe towards the center of the particle with particle core made up of pure Ag. Alloying of Ag and Fe is confirmed by the absence of diffraction signal corresponding to pure Fe phase and presence of a paramagnetic phase in nanoparticles containing a diamagnetic (Ag) and ferromagnetic (Fe) elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-Fe2O3 nanoparticles were synthesized by a low temperature solution combustion method. The structural, magnetic and luminescence properties were studied. Powder X-ray diffraction (PXRD) pattern of alpha-Fe2O3 exhibits pure rhombohedral structure. SEM micrographs reveal the dumbbell shaped particles. The EPR spectrum shows an intense resonance signal at g approximate to 5.61 corresponding to isolated Fe3+ ions situated in axially distorted sites, whereas the g approximate to 2.30 is due to Fe3+ ions coupled by exchange interaction. Raman studies show A(1g) (225 cm(-1)) and E-g (293 and 409 cm(-1)) phonon modes. The absorption at 300 nm results from the ligand to metal charge transfer transitions whereas the 540 nm peak is mainly due to the (6)A(1) + (6)A(1) —> T-4(1)(4G) + T-4(1)(4G) excitation of an Fe3+-Fe3+ pair. A prominent TL glow peak was observed at 140 C at heating rate of 5 degrees C s(-1). The trapping parameters namely activation energy (E), frequency factor (s) and order of kinetics (b) were evaluated and discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research focused on determining the effect of hydroxyapatite-20 wt% mullite (H20M) particle eluates on apoptosis and differentiation of human fetal osteoblast (hFOB) cells. The H20M particles (257 +/- 37 nm) were prepared, starting with the production of a nanocomposite using a unique route of spark plasma sintering, followed by a repeated grinding-cryo treatment and elution process. Tetrazolium based cytotoxicity assay results showed a time-and dose-dependent effect of H20M particle eluates on hFOB cytotoxicity. In particular, the results revealed statistically reduced cell viability after hFOB were exposed to the above 10% H20M (257 +/- 37 nm) eluates for 48 h. The apoptotic cell death triggered by H20M treatment was proven by the analysis of molecular markers of apoptosis, that is, the Bcl-2 family of genes. hFOB expression of Bcl-xL and Bcl-xS significantly increased 25.6- and 25.2-fold for 50% of H20M concentrations, respectively. The ratio of Bcl-xL/Bax (4.01) decreased 2-fold for hFOB exposed to 100% of H20M eluates than that for 10% H20M eluate (7.94) treated hFOB cells. On the other hand, the Bcl-xS/Bax ratio for the 10% H20M eluate was 4.15-fold, whereas for 100% H20M eluates, it was 11.55-fold. Specifically, the anti-apoptotic effect of the H20M particle eluates was corroborated by the up-regulation of bone cell differentiation marker genes such as, collagen type I, cbfa, and osteocalcin. In summary, the present work clearly demonstrated that H20M submicron to nanometer composite particle eluates have a minimal effect on hFOB apoptosis and can even up-regulate the expression of bone cell markers at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, silver nanoparticles were rapidly synthesized by treating silver ions with Citrus limon (lemon) extract at higher temperature. The effect of process parameters like reductant concentration, mixing ratio of the reactants, concentration of silver nitrate and heating time period were studied. The formation of silver nanoparticles was confirmed by surface plasmon resonance as determined by UV-visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. Nanoparticles below 50 nm with spherical and spheroidal shape were observed from microscopic studies. The study offers a rapid method to synthesize silver nanoparticles within ten minutes of interaction with the bio-reductant.