942 resultados para hepatic lipids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E2F transcription factors are known regulators of the cell cycle, proliferation, apoptosis, and differentiation. Here, we reveal that E2F1 plays an essential role in liver physiopathology through the regulation of glycolysis and lipogenesis. We demonstrate that E2F1 deficiency leads to a decrease in glycolysis and de novo synthesis of fatty acids in hepatocytes. We further demonstrate that E2F1 directly binds to the promoters of key lipogenic genes, including Fasn, but does not bind directly to genes encoding glycolysis pathway components, suggesting an indirect effect. In murine models, E2F1 expression and activity increased in response to feeding and upon insulin stimulation through canonical activation of the CDK4/pRB pathway. Moreover, E2F1 expression was increased in liver biopsies from obese, glucose-intolerant humans compared with biopsies from lean subjects. Finally, E2f1 deletion completely abrogated hepatic steatosis in different murine models of nonalcoholic fatty liver disease (NAFLD). In conclusion, our data demonstrate that E2F1 regulates lipid synthesis and glycolysis and thus contributes to the development of liver pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the diagnostic capacity of abdominal computed tomography in the assessment of hepatic steatosis using the portal phase with a simplified calculation method as compared with the non-contrast-enhanced phase. Materials and Methods In the present study, 150 patients were retrospectively evaluated by means of non-contrast-enhanced and contrast-enhanced computed tomography. One hundred patients had hepatic steatosis and 50 were control subjects. For the diagnosis of hepatic steatosis in the portal phase, the authors considered a result of < 104 HU calculated by the formula [L - 0.3 × (0.75 × P + 0.25 × A)] / 0.7, where L, P and A represent the attenuation of the liver, of the main portal vein and abdominal aorta, respectively. Sensitivity, specificity, positive and negative predictive values were calculated, using non-contrast-enhanced computed tomography as the reference standard. Results The simplified calculation method with portal phase for the diagnosis of hepatic steatosis showed 100% sensitivity, 36% specificity, negative predictive value of 100% and positive predictive value of 75.8%. The rate of false positive results was 64%. False negative results were not observed. Conclusion The portal phase presents an excellent sensitivity in the diagnosis of hepatic steatosis, as compared with the non-contrast-enhanced phase of abdominal computed tomography. However, the method has low specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the sonographic measurement of subcutaneous and visceral fat in correlation with the grade of hepatic steatosis. Materials and Methods In the period from October 2012 to January 2013, 365 patients were evaluated. The subcutaneous and visceral fat thicknesses were measured with a convex, 3–4 MHz transducer transversely placed 1 cm above the umbilical scar. The distance between the internal aspect of the abdominal rectus muscle and the posterior aortic wall in the abdominal midline was considered for measurement of the visceral fat. Increased liver echogenicity, blurring of vascular margins and increased acoustic attenuation were the parameters considered in the quantification of hepatic steatosis. Results Steatosis was found in 38% of the study sample. In the detection of moderate to severe steatosis, the area under the ROC curve was 0.96 for women and 0.99 for men, indicating cut-off values for visceral fat thickness of 9 cm and 10 cm, respectively. Conclusion The present study evidenced the correlation between steatosis and visceral fat thickness and suggested values for visceral fat thickness to allow the differentiation of normality from risk for steatohepatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report a case of umbilical venous catheter malposition with air in the portal venous system in a preterm neonate. Initially, the hypothesis of necrotizing enterocolitis was considered, but the newborn progressed with no finding of disease and the air disappeared at follow-up radiography. The differential diagnosis of such a finding can avoid unnecessary clinical treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractObjective:The present article is aimed at reporting the author’s experience with transcatheter arterial embolization using a lipiodol-ethanol mixture in three cases of unresectable symptomatic giant hepatic hemangiomas.Materials and Methods:The cases of three patients with giant unresectable symptomatic hepatic hemangiomas embolized in the period 2009–2010 were retrospectively reviewed. In all the cases, transarterial embolization was performed with an ethanol-lipiodol mixture.Results:Symptoms regression and quality of life improvement were observed in all the cases. No complications were observed and all the patients were discharged within 12 hours after the procedure.Conclusion:Transcatheter arterial embolization using ethanol mixed with lipiodol was a safe and effective treatment for symptomatic giant hepatic hemangiomas in this small series of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objective: To analyze the prevalence of anatomical variations of celiac arterial trunk (CAT) branches and hepatic arterial system (HAS), as well as the CAT diameter, length and distance to the superior mesenteric artery. Materials and Methods: Retrospective, cross-sectional and predominantly descriptive study based on the analysis of multidetector computed tomography images of 60 patients. Results: The celiac trunk anatomy was normal in 90% of cases. Hepatosplenic trunk was found in 8.3% of patients, and hepatogastric trunk in 1.7%. Variation of the HAS was observed in 21.7% of cases, including anomalous location of the right hepatic artery in 8.3% of cases, and of the left hepatic artery, in 5%. Also, cases of joint relocation of right and left hepatic arteries, and trifurcation of the proper hepatic artery were observed, respectively, in 3 (5%) and 2 (3.3%) patients. Mean length and caliber of the CAT were 2.3 cm and 0.8 cm, respectively. Mean distance between CAT and superior mesenteric artery was 1.2 cm (standard deviation = 4.08). A significant correlation was observed between CAT diameter and length, and CAT diameter and distance to superior mesenteric artery. Conclusion: The pattern of CAT variations and diameter corroborate the majority of the literature data. However, this does not happen in relation to the HAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Although digital angiography remains as the gold standard for imaging the celiac arterial trunk and hepatic arteries, multidetector computed tomography in association with digital images processing by software resources represents a useful tool particularly attractive for its non invasiveness. Knowledge of normal anatomy as well as of its variations is helpful in images interpretation and to address surgical planning on a case-by-case basis. The present essay illustrates several types of anatomical variations of celiac trunk, hepatic artery and its main branches, by means of digitally reconstructed computed tomography images, correlating their prevalence in the population with surgical implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.