896 resultados para health data
Resumo:
Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.
Resumo:
Bronfenbrenner.s Bioecological Model, expressed as the developmental equation, D f PPCT, is the theoretical framework for two studies that bring together diverse strands of psychology to study the work-life interface of working adults. Occupational and organizational psychology is focused on the demands and resources of work and family, without emphasising the individual in detail. Health and personality psychology examine the individual but without emphasis on the individual.s work and family roles. The current research used Bronfenbrenner.s theoretical framework to combine individual differences, work and family to understand how these factors influence the working adult.s psychological functioning. Competent development has been defined as high well-being (measured as life satisfaction and psychological well-being) and high work engagement (as work vigour, work dedication and absorption in work) and as the absence of mental illness (as depression, anxiety and stress) and the absence of burnout (as emotional exhaustion, cynicism and professional efficacy). Study 1 and 2 were linked, with Study 1 as a cross-sectional survey and Study 2, a prospective panel study that followed on from the data used in Study1. Participants were recruited from a university and from a large public hospital to take part in a 3-wave, online study where they completed identical surveys at 3-4 month intervals (N = 470 at Time 1 and N = 198 at Time 3). In Study 1, hierarchical multiple regressions were used to assess the effects of individual differences (Block 1, e.g. dispositional optimism, coping self-efficacy, perceived control of time, humour), work and family variables (Block 2, e.g. affective commitment, skill discretion, work hours, children, marital status, family demands) and the work-life interface (Block 3, e.g. direction and quality of spillover between roles, work-life balance) on the outcomes. There were a mosaic of predictors of the outcomes with a group of seven that were the most frequent significant predictors and which represented the individual (dispositional optimism and coping self-efficacy), the workplace (skill discretion, affective commitment and job autonomy) and the work-life interface (negative work-to-family spillover and negative family-to-work spillover). Interestingly, gender and working hours were not important predictors. The effects of job social support, generally and for work-life issues, perceived control of time and egalitarian gender roles on the outcomes were mediated by negative work-to-family spillover, particularly for emotional exhaustion. Further, the effect of negative spillover on depression, anxiety and work engagement was moderated by the individual.s personal and workplace resources. Study 2 modelled the longitudinal relationships between the group of the seven most frequent predictors and the outcomes. Using a set of non-nested models, the relative influences of concurrent functioning, stability and change over time were assessed. The modelling began with models at Time 1, which formed the basis for confirmatory factor analysis (CFA) to establish the underlying relationships between the variables and calculate the composite variables for the longitudinal models. The CFAs were well fitting with few modifications to ensure good fit. However, using burnout and work engagement together required additional analyses to resolve poor fit, with one factor (representing a continuum from burnout to work engagement) being the only acceptable solution. Five different longitudinal models were investigated as the Well-Being, Mental Distress, Well-Being-Mental Health, Work Engagement and Integrated models using differing combinations of the outcomes. The best fitting model for each was a reciprocal model that was trimmed of trivial paths. The strongest paths were the synchronous correlations and the paths within variables over time. The reciprocal paths were more variable with weak to mild effects. There was evidence of gain and loss spirals between the variables over time, with a slight net gain in resources that may provide the mechanism for the accumulation of psychological advantage over a lifetime. The longitudinal models also showed that there are leverage points at which personal, psychological and managerial interventions can be targeted to bolster the individual and provide supportive workplace conditions that also minimise negative spillover. Bronfenbrenner.s developmental equation has been a useful framework for the current research, showing the importance of the person as central to the individual.s experience of the work-life interface. By taking control of their own life, the individual can craft a life path that is most suited to their own needs. Competent developmental outcomes were most likely where the person was optimistic and had high self-efficacy, worked in a job that they were attached to and which allowed them to use their talents and without too much negative spillover between their work and family domains. In this way, individuals had greater well-being, better mental health and greater work engagement at any one time and across time.
Resumo:
This thesis describes a discrete component of a larger mixed-method (survey and interview) study that explored the health-promotion and risk-reduction practices of younger premenopausal survivors of ovarian, breast and haematological cancers. This thesis outlines my distinct contribution to the larger study, which was to: (1) Produce a literature review that thoroughly explored all longer-term breast cancer treatment outcomes, and which outlined the health risks to survivors associated with these; (2) Describe and analyse the health-promotion and risk-reduction behaviours of nine younger female survivors of breast cancer as articulated in the qualitative interview dataset; and (3) Test the explanatory power of the Precede-Proceed theoretical framework underpinning the study in relation to the qualitative data from the breast cancer cohort. The thesis reveals that breast cancer survivors experienced many adverse outcomes as a result of treatment. While they generally engaged in healthy lifestyle practices, a lack of knowledge about many recommended health behaviours emerged throughout the interviews. The participants also described significant internal and external pressures to behave in certain ways because of the social norms surrounding the disease. This thesis also reports that the Precede-Proceed model is a generally robust approach to data collection, analysis and interpretation in the context of breast cancer survivorship. It provided plausible explanations for much of the data in this study. However, profound sociological and psychological implications arose during the analysis that were not effectively captured or explained by the theories underpinning the model. A sociological filter—such as Turner’s explanation of the meaning of the body and embodiment in the social sphere (Turner, 2008)—and the psychological concerns teased out in Mishel’s (1990) Uncertainty in Illness Theory, provided a useful dimension to the findings generated through the Precede-Proceed model. The thesis concludes with several recommendations for future research, clinical practice and education in this context.
Resumo:
Background: Efforts to prevent the development of overweight and obesity have increasingly focused early in the life course as we recognise that both metabolic and behavioural patterns are often established within the first few years of life. Randomised controlled trials (RCTs) of interventions are even more powerful when, with forethought, they are synthesised into an individual patient data (IPD) prospective meta-analysis (PMA). An IPD PMA is a unique research design where several trials are identified for inclusion in an analysis before any of the individual trial results become known and the data are provided for each randomised patient. This methodology minimises the publication and selection bias often associated with a retrospective meta-analysis by allowing hypotheses, analysis methods and selection criteria to be specified a priori. Methods/Design: The Early Prevention of Obesity in CHildren (EPOCH) Collaboration was formed in 2009. The main objective of the EPOCH Collaboration is to determine if early intervention for childhood obesity impacts on body mass index (BMI) z scores at age 18-24 months. Additional research questions will focus on whether early intervention has an impact on children’s dietary quality, TV viewing time, duration of breastfeeding and parenting styles. This protocol includes the hypotheses, inclusion criteria and outcome measures to be used in the IPD PMA. The sample size of the combined dataset at final outcome assessment (approximately 1800 infants) will allow greater precision when exploring differences in the effect of early intervention with respect to pre-specified participant- and intervention-level characteristics. Discussion: Finalisation of the data collection procedures and analysis plans will be complete by the end of 2010. Data collection and analysis will occur during 2011-2012 and results should be available by 2013. Trial registration number: ACTRN12610000789066
Resumo:
Introduction Among the many requirements of establishing community health, a healthy urban environment stands out as significant one. A healthy urban environment constantly changes and improves community well-being and expands community resources. The promotion efforts for such an environment, therefore, must include the creation of structures and processes that actively work to dismantle existing community inequalities. In general, these processes are hard to manage; therefore, they require reliable planning and decision support systems. Current and previous practices justify that the use of decision support systems in planning for healthy communities have significant impacts on the communities. These impacts include but are not limited to: increasing collaboration between stakeholders and the general public; improving the accuracy and quality of the decision making process; enhancing healthcare services; and improving data and information availability for health decision makers and service planners. Considering the above stated reasons, this study investigates the challenges and opportunities of planning for healthy communities with the specific aim of examining the effectiveness of participatory planning and decision systems in supporting the planning for such communities. Methods This study introduces a recently developed methodology, which is based on an online participatory decision support system. This new decision support system contributes to solve environmental and community health problems, and to plan for healthy communities. The system also provides a powerful and effective platform for stakeholders and interested members of the community to establish an empowered society and a transparent and participatory decision making environment. Results The paper discusses the preliminary findings from the literature review of this decision support system in a case study of Logan City, Queensland. Conclusion The paper concludes with future research directions and applicability of this decision support system in health service planning elsewhere.
Resumo:
In this issue Burns et al. report an estimate of the economic loss to Auckland City Hospital from cases of healthcare-associated bloodstream infection. They show that patients with infection stay longer in hospital and this must impose an opportunity cost because beds are blocked. Harder to measure costs fall on patients, their families and non-acute health services. Patients face some risk of dying from the infection.
Resumo:
Objectives: To investigate the impact of transitions out of marriage (separation, widowhood) on the self reported mental health of men and women, and examine whether perceptions of social support play an intervening role. ---------- Methods: The analysis used six waves (2001–06) of an Australian population based panel study, with an analytical sample of 3017 men and 3225 women. Mental health was measured using the MHI-5 scale scored 0–100 (α=0.97), with a higher score indicating better mental health. Perceptions of social support were measured using a 10-item scale ranging from 10 to 70 (α=0.79), with a higher score indicating higher perceived social support. A linear mixed model for longitudinal data was used, with lags for marital status, mental health and social support. ---------- Results: After adjustment for social characteristics there was a decline in mental health for men who separated (−5.79 points) or widowed (−7.63 points), compared to men who remained married. Similar declines in mental health were found for women who separated (−6.65 points) or became widowed (−9.28 points). The inclusion of perceived social support in the models suggested a small mediation effect of social support for mental health with marital loss. Interactions between perceived social support and marital transitions showed a strong moderating effect for men who became widowed. No significant interactions were found for women. ---------- Conclusion: Marital loss significantly decreased mental health. Increasing, or maintaining, high levels of social support has the potential to improve widowed men's mental health immediately after the death of their spouse.
Resumo:
Objective: To identify agreement levels between conventional longitudinal evaluation of change (post–pre) and patient-perceived change (post–then test) in health-related quality of life. Design: A prospective cohort investigation with two assessment points (baseline and six-month follow-up) was implemented. Setting: Community rehabilitation setting. Subjects: Frail older adults accessing community-based rehabilitation services. Intervention: Nil as part of this investigation. Main measures: Conventional longitudinal change in health-related quality of life was considered the difference between standard EQ-5D assessments completed at baseline and follow-up. To evaluate patient-perceived change a ‘then test’ was also completed at the follow-up assessment. This required participants to report (from their current perspective) how they believe their health-related quality of life was at baseline (using the EQ-5D). Patient-perceived change was considered the difference between ‘then test’ and standard follow-up EQ-5D assessments. Results: The mean (SD) age of participants was 78.8 (7.3). Of the 70 participants 62 (89%) of data sets were complete and included in analysis. Agreement between conventional (post–pre) and patient-perceived (post–then test) change was low to moderate (EQ-5D utility intraclass correlation coefficient (ICC)¼0.41, EQ-5D visual analogue scale (VAS) ICC¼0.21). Neither approach inferred greater change than the other (utility P¼0.925, VAS P¼0.506). Mean (95% confidence interval (CI)) conventional change in EQ-5D utility and VAS were 0.140 (0.045,0.236) and 8.8 (3.3,14.3) respectively, while patient-perceived change was 0.147 (0.055,0.238) and 6.4 (1.7,11.1) respectively. Conclusions: Substantial disagreement exists between conventional longitudinal evaluation of change in health-related quality of life and patient-perceived change in health-related quality of life (as measured using a then test) within individuals.
Resumo:
OBJECTIVES: To compare three different methods of falls reporting and examine the characteristics of the data missing from the hospital incident reporting system. DESIGN: Fourteen-month prospective observational study nested within a randomized controlled trial. SETTING: Rehabilitation, stroke, medical, surgical, and orthopedic wards in Perth and Brisbane, Australia. PARTICIPANTS: Fallers (n5153) who were part of a larger trial (1,206 participants, mean age 75.1 � 11.0). MEASUREMENTS: Three falls events reporting measures: participants’ self-report of fall events, fall events reported in participants’ case notes, and falls events reported through the hospital reporting systems. RESULTS: The three reporting systems identified 245 falls events in total. Participants’ case notes captured 226 (92.2%) falls events, hospital incident reporting systems captured 185 (75.5%) falls events, and participant selfreport captured 147 (60.2%) falls events. Falls events were significantly less likely to be recorded in hospital reporting systems when a participant sustained a subsequent fall, (P5.01) or when the fall occurred in the morning shift (P5.01) or afternoon shift (P5.01). CONCLUSION: Falls data missing from hospital incident report systems are not missing completely at random and therefore will introduce bias in some analyses if the factor investigated is related to whether the data ismissing.Multimodal approaches to collecting falls data are preferable to relying on a single source alone.
Resumo:
This study used the Australian Environmental Health Risk Assessment Framework to assess the human health risk of dioxin exposure through foods for local residents in two wards of Bien Hoa City, Vietnam. These wards are known hot-spots for dioxin and a range of stakeholders from central government to local levels were involved in this process. Publications on dioxin characteristics and toxicity were reviewed and dioxin concentrations in local soil, mud, foods, milk and blood samples were used as data for this risk assessment. A food frequency survey of 400 randomly selected households in these wards was conducted to provide data for exposure assessment. Results showed that local residents who had consumed locally cultivated foods, especially fresh water fish and bottom-feeding fish, free-ranging chicken, duck, and beef were at a very high risk, with their daily dioxin intake far exceeding the tolerable daily intake recommended by the WHO. Based on the results of this assessment, a multifaceted risk management program was developed and has been recognized as the first public health program ever to have been implemented in Vietnam to reduce the risks of dioxin exposure at dioxin hot-spots.
Resumo:
Background: International data on child maltreatment are largely derived from child protection agencies, and predominantly report only substantiated cases of child maltreatment. This approach underestimates the incidence of maltreatment and makes inter-jurisdictional comparisons difficult. There has been a growing recognition of the importance of health professionals in identifying, documenting and reporting suspected child maltreatment. This study aimed to describe the issues around case identification using coded morbidity data, outline methods for selecting and grouping relevant codes, and illustrate patterns of maltreatment identified. Methods: A comprehensive review of the ICD-10-AM classification system was undertaken, including review of index terms, a free text search of tabular volumes, and a review of coding standards pertaining to child maltreatment coding. Identified codes were further categorised into maltreatment types including physical abuse, sexual abuse, emotional or psychological abuse, and neglect. Using these code groupings, one year of Australian hospitalisation data for children under 18 years of age was examined to quantify the proportion of patients identified and to explore the characteristics of cases assigned maltreatment-related codes. Results: Less than 0.5% of children hospitalised in Australia between 2005 and 2006 had a maltreatment code assigned, almost 4% of children with a principal diagnosis of a mental and behavioural disorder and over 1% of children with an injury or poisoning as the principal diagnosis had a maltreatment code assigned. The patterns of children assigned with definitive T74 codes varied by sex and age group. For males selected as having a maltreatment-related presentation, physical abuse was most commonly coded (62.6% of maltreatment cases) while for females selected as having a maltreatment-related presentation, sexual abuse was the most commonly assigned form of maltreatment (52.9% of maltreatment cases). Conclusion: This study has demonstrated that hospital data could provide valuable information for routine monitoring and surveillance of child maltreatment, even in the absence of population-based linked data sources. With national and international calls for a public health response to child maltreatment, better understanding of, investment in and utilisation of our core national routinely collected data sources will enhance the evidence-base needed to support an appropriate response to children at risk.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
The Queensland Department of Main Roads uses Weigh-in-Motion (WiM) devices to covertly monitor (at highway speed) axle mass, axle configurations and speed of heavy vehicles on the road network. Such data is critical for the planning and design of the road network. Some of the data appears excessively variable. The current work considers the nature, magnitude and possible causes of WiM data variability. Over fifty possible causes of variation in WiM data have been identified in the literature. Data exploration has highlighted five basic types of variability specifically: ----- • cycling, both diurnal and annual;----- • consistent but unreasonable data;----- • data jumps;----- • variations between data from opposite sides of the one road; and ----- • non-systematic variations.----- This work is part of wider research into procedures to eliminate or mitigate the influence of WiM data variability.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.