614 resultados para guanidine alkaloids
Resumo:
Erythrina verna is a medicinal plant used to calm agitation popularly known as mulungu. We purchased the barks of E. verna from a commercial producer and analyzed the alkaloid fraction of the bark by CG-MS and HRESI-MS. Five erythrinian alkaloids were identified: erysotrine, erythratidine, erythratidinone, epimer, and 11-hydroxieritratidinone. Here we report the compound 11-hydroxieritratidinone for the first time as a natural product.
Resumo:
The chemical composition of Spathelia excelsa (Krause) R. S. Cowan & Brizicky was investigated and the limonoids harrisonin (1) and deacetylspathelin (2), alkaloids folinin and casimiroin mixture (3a, b), plus a further casimiroin (3b) were identified in methanol extract from root. The CH2Cl2 extract from the rachis yielded protolimonoid 3β-angeloyl-21,24-epoxy-7α,21α,23α,25-tetrahydroxy-4α,4β,8β,10β-tetramethyl-25-dimethyl-14,18-cyclo-5α,13α,14α,17α-cholestane (4), and methanol extract, the limonoids limonin diosphenol (5) and perforatin (6), as well as the chromone biflorin (7). Harrisonin and biflorin were isolated for the first time in this genus. On the antifungal assay against witches' broom (Moniliophthoraperniciosa) compound 3b was found to be active.
Resumo:
Cat's claw oxindole alkaloids are prone to isomerization in aqueous solution. However, studies on their behavior in extraction processes are scarce. This paper addressed the issue by considering five commonly used extraction processes. Unlike dynamic maceration (DM) and ultrasound-assisted extraction, substantial isomerization was induced by static maceration, turbo-extraction and reflux extraction. After heating under reflux in DM, the kinetic order of isomerization was established and equations were fitted successfully using a four-parameter Weibull model (R² > 0.999). Different isomerization rates and equilibrium constants were verified, revealing a possible matrix effect on alkaloid isomerization.
Resumo:
Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.
Resumo:
Phytochemical investigations of the stem bark, leaves and twigs of Guatteria citriodora resulted in the isolation of eight alkaloids: liriodenine, lysicamine, O-methylmoschatoline, 3-methoxyoxoputerine, palmatine, 3-methoxyguadiscidine, guattescidine and oxoputerine. The structures of the isolated substances were established by extensive spectroscopic techniques (1D and 2D NMR) and mass spectrometry (MS), as well as by comparison with data reported in the literature. The in vitro antimalarial activity of the alkaloidal fractions of the leaves and twigs against Plasmodium falciparum FCR3 showed significant results, with IC50 = 1.07 and 0.33 mg mL-1, respectively. The alkaloidal fraction of the leaves showed moderate activity against Enterococcus faecalis, with IC50 = 125.0 mg mL-1. Antiplasmodial and antibacterial activities are attributed to alkaloidal constituents.
Resumo:
In this paper, the chemical study of Hortia superba and antimycobacterial potential of Hortia species were investigated. Crude extracts and limonoids, alkaloids, dihydrocinnamic acid derivatives and coumarins isolated from Hortia superba, Hortia oreadica and Hortia brasiliana were evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium kansasii and Mycobacterium avium. The results obtained demonstrated an inhibitory effect of the dichloromethane extract of leaves of H. oreadica (MIC 31.25 µg mL-1), indolequinazoline (15.62 µg mL-1) and furoquinoline (31.25 µg mL-1) alkaloids, and dihydrocinnamic acid derivatives (62.50 µg mL-1), on the growth of M. tuberculosis. These results are promising in relation to the search for biologically active natural products and could be useful in the development of effective new drugs against mycobacteria.
Resumo:
Uncaria tomentosa (cat's claw) is a vine widely distributed throughout the South-American rainforest. Many studies investigating the chemical composition of cat's claw have focused on the pentacyclic (POA) and tetracyclic oxindole alkaloids (TOA), quinovic acid glycosides (QAG), and polyphenols (PPH). Nevertheless, it is still uncertain how environmental factors affect chemical groups. The aim of this work was to better understand the influence of environmental factors (geographic origin, altitude, and season) on cat's claw chemical composition. Stem bark, branches and leaf samples were extracted and analyzed by HPLC-PDA. The data obtained were explored by multivariate analysis (HCA and PCA). Higher amounts of oxindole alkaloids and PPH were found in leaves, followed by stem bark and branches. No clear relationship was verified among geographic origin or altitude and chemical composition, which remained unchanged regardless of season (dry or rainy). However, three oxindole alkaloid chemotypes were clearly recognized: chemotype I (POA with cis D/E ring junction); chemotype II (POA with trans D/E ring junction); and chemotype III (TOA). Thus, environmental factors appear to have only a minor influence on the chemical heterogeneity of the cat's claw wild population. Nevertheless, the occurrence of different chemotypes based on alkaloid profiles seems to be clear.
Resumo:
Cathepsins represent a class of enzymes that has the primary function of randomly degrading proteins in the lysosomes, although are also involved in different pathologies. The aim of this paper was to evaluate the capacity of acridone alkaloids isolated from Swinglea glutinosa (Rutaceae) to inhibit cathepsin L in vitro . The IC50 values found were in the 0.8-57 µM range and the most promising compounds were alkaloids 1 and 2, with IC50 of 0.9 and 0.8 µM, respectively. Enzyme kinetics revealed that they are reversible competitive inhibitors with respect to the substrate Z-FR-MCA. This small series of acridone alkaloids showed low selectivity for both cathepsins, but represent promising lead candidates for the further development of competitive cathepsin L and V inhibitors.
Resumo:
A new sarpagine-type alkaloid, Na-methylrauflorine (1), was isolated from Rauvolfia capixabaetogether with isoreserpiline (2),Nb-oxide-isoreserpiline (3), ajmalicine (4), perakine (5) and vinorine (6) alkaloids. These compounds were characterized based on their spectral data basis, mainly one- (1H, 13C, APT) and two-dimensional(1H-1H-COSY, 1H-1H-NOESY, HMQC and HMBC) NMR, and mass spectra, also involving comparison with data from the literature.
Resumo:
The ergot disease of sorghum (Sorghum bicolor), caused by the fungus Claviceps sorghi, restricted to the Indian sub-continent, is a disease in which the pathogen infects the florets, colonizing the unfertilized ovaries. Losses are higher in hybrid seed production fields due to a higher susceptibility of male sterile lines. The sclerotia of C. sorghi have never been found to contain alkaloids with a tetracyclic ergoline ring system, which is normal in most ergot pathogens. In this work, we show that sclerotia of C. sorghi contain caffeine alkaloid and the ability to produce it in vitro.
Resumo:
Nicotine, an oxidizing agent, is certainly one of the most widely used alkaloids in the world. It is, together with its main metabolite, cotinine, responsible for tobacco-dependence. The use of tobacco is closely associated with lung disease, morphological leukocyte modification and generation of oxidant species. The aim of this study was to look for a possible relationship between cotinine, oxidant species generation and oxidative processes. After studying the action of cotinine in some chemical oxidation models and on the enzymatic kinetics of peroxidases (myeloperoxidase and horseradish peroxidase), we concluded that cotinine does not act directly upon H2O2, HOCl, taurine chloramines, horseradish peroxidase or myeloperoxidase.
Resumo:
The present paper reports results of the effect of Potato virus X (PVX) on the contents of total phenols and alkaloids in leaves of Datura stramonium. A significant decrease in the contents of phenols and alkaloids was observed in leaves inoculated with PVX (X-I). However, there was an increase in the percentage of phenols in leaves rubbed with phosphate buffer (C1-I) and in leaves from the nodes immediately above, possibly induced by mechanical injury. Gas chromatography/mass spectroscopy revealed amounts of scopolamine in samples submitted to all treatments, except X-I, in which the amount of this alkaloid was low. High amounts of an unidentified compound (molecular ion m/z 302 and a prominent peak at m/z 129) were noted in extracts from leaves X-I, C1-I and leaves from the nodes immediately above the leaves inoculated with PVX. It is suggested that the synthesis and accumulation of the unidentified compound is a result of stress from mechanical injury and virus inoculation.
Resumo:
Modifiering av metallytor med starkt adsorberade kirala organiska molekyler är eventuellt den mest relevanta teknik man vet i dag för att skapa kirala ytor. Den kan utnyttjas i katalytisk produktion av enantiomeriskt rena kirala föreningar som behövs t.ex. som läkemedel och aromkemikalier. Trots många fördelar av asymmetrisk heterogen katalys jämfört med andra sätt för att få kirala föreningar, har den ändå inte blivit ett allmänt verktyg för storskaliga tillämpningar. Detta beror t.ex. på brist på djupare kunskaper i katalytiska reaktionsmekanismer och ursprunget för asymmetrisk induktion. I denna studie användes molekylmodelleringstekniker för att studera asymmetriska, heterogena katalytiska system, speciellt hydrering av prokirala karbonylföreningar till motsvarande kirala alkoholer på cinchona-alkaloidmodifierade Pt-katalysatorer. 1-Fenyl-1,2-propandion (PPD) och några andra föreningar, som innehåller en prokiral C=O-grupp, användes som reaktanter. Konformationer av reaktanter och cinchona-alkaloider (som kallas modifierare) samt vätebundna 1:1-komplex mellan dem studerades i gas- och lösningsfas med metoder som baserar sig på vågfunktionsteori och täthetsfunktionalteori (DFT). För beräkningen av protonaffiniteter användes också högst noggranna kombinationsmetoder såsom G2(MP2). Den relativa populationen av modifierarnas konformationer varierade som funktion av modifieraren, dess protonering och lösningsmedlet. Flera reaktant–modifierareinteraktionsgeometrier beaktades. Slutsatserna på riktning av stereoselektivitet baserade sig på den relativa termodynamiska stabiliteten av de diastereomeriska reaktant–modifierare-komplexen samt energierna hos π- och π*-orbitalerna i den reaktiva karbonylgruppen. Adsorption och reaktioner på Pt(111)-ytan betraktades med DFT. Regioselektivitet i hydreringen av PPD och 2,3-hexandion kunde förklaras med molekyl–yta-interaktioner. Storleken och formen av klustret använt för att beskriva Pt-ytan inverkade inte bara på adsorptionsenergierna utan också på de relativa stabiliteterna av olika adsorptionsstrukturer av en molekyl. Populationerna av modifierarnas konformationer i gas- och lösningsfas korrelerade inte med populationerna på Pt-ytan eller med enantioselektiviteten i hydreringen av PPD på Pt–cinchona-katalysatorer. Vissa modifierares konformationer och reaktant–modifierare-interaktionsgeometrier var stabila bara på metallytan. Teoretiskt beräknade potentialenergiprofiler för hydrering av kirala α-hydroxiketoner på Pt implicerade preferens för parvis additionsmekanism för väte och selektiviteter i harmoni med experimenten. De uppnådda resultaten ökar uppfattningen om kirala heterogena katalytiska system och kunde därför utnyttjas i utvecklingen av nya, mera aktiva och selektiva kirala katalysatorer.
Resumo:
Bacteria can exist as planktonic, the lifestyle in which single cells exist in suspension, and as biofilms, which are surface-attached bacterial communities embedded in a selfproduced matrix. Most of the antibiotics and the methods for antimicrobial work have been developed for planktonic bacteria. However, the majority of the bacteria in natural habitats live as biofilms. Biofilms develop dauntingly fast high resistance towards conventional antibacterial treatments and thus, there is a great need to meet the demands of effective anti-biofilm therapy. In this thesis project it was attempted to fill the void of anti-biofilm screening methods by developing a platform of assays that evaluate the effect that screened compounds have on the total biomass, viability and the extracellular polysaccharide (EPS) layer of the biofilms. Additionally, a new method for studying biofilms and their interactions with compounds in a continuous flow system was developed using capillary electrochromatography (CEC). The screening platform was utilized with a screening campaign using a small library of cinchona alkaloids. The assays were optimized to be statistically robust enough for screening. The first assay, based on crystal violet staining, measures total biofilm biomass, and it was automated using a liquid handling workstation to decrease the manual workload and signal variation. The second assay, based on resazurin staining, measures viability of the biofilm, and it was thoroughly optimized for the strain used, but was then a very simple and fast method to be used for primary screening. The fluorescent resazurin probe is not toxic to the biofilms. In fact, it was also shown in this project that staining the biofilms with resazurin prior to staining with crystal violet had no effect on the latter and they can be used in sequence on the same screening plate. This sequential addition step was indeed a major improvement on the use of reagents and consumables and also shortened the work time. As a third assay in the platform a wheat germ agglutinin based assay was added to evaluate the effect a compound has on the EPS layer. Using this assay it was found that even if compounds might have clear effect on both biomass and viability, the EPS layer can be left untouched or even be increased. This is a clear implication of the importance of using several assays to be able to find “true hits” in a screening setting. In the pilot study of screening for antimicrobial and anti-biofilm effects using a cinchona alkaloid library, one compound was found to have antimicrobial effect against planktonic bacteria and prevent biofilm formation at low micromolar concentration. To eradicate biofilms, a higher concentration was needed. It was also shown that the chemical space occupied by the active compound was slightly different than the rest of the cinchona alkaloids as well as the rest of the compounds used for validatory screening during the optimization processes of the separate assays.