967 resultados para global problems
Resumo:
Plant transformation is now a core research tool in plant biology and a practical tool for cultivar improvement. There are verified methods for stable introduction of novel genes into the nuclear genomes of over 120 diverse plant species. This review examines the criteria to verify plant transformation; the biological and practical requirements for transformation systems; the integration of tissue culture, gene transfer, selection, and transgene expression strategies to achieve transformation in recalcitrant species; and other constraints to plant transformation including regulatory environment, public perceptions, intellectual property, and economics. Because the costs of screening populations showing diverse genetic changes can far exceed the costs of transformation, it is important to distinguish absolute and useful transformation efficiencies. The major technical challenge facing plant transformation biology is the development of methods and constructs to produce a high proportion of plants showing predictable transgene expression without collateral genetic damage. This will require answers to a series of biological and technical questions, some of which are defined.
Resumo:
This article discusses the ethical justification for and reviews the American evidence on the effectiveness of; treatment for alcohol and heroin dependence that is provided under legal coercion to offenders whose alcohol and drug dependence has contributed to the commission of the offence with which they have been charged or convicted. The article focuses on legally coerced treatment for drink-driving offenders and heroin-dependent property offenders. it outlines the various arguments that have been made for providing such treatment under legal coercion, namely. the over-representation of alcohol and drug dependent persons in prison populations; the contributory causal role of alcohol and other drug problems in the offences that lead to their imprisonment; the high rates of relapse to drug use and criminal involvement after incarceration; the desirability of keeping injecting heroin users out of prisons as a way of reducing the transmission of infectious diseases such as HIV and hepatitis; and the putatively greater cost-effectiveness of treatment compared with incarceration. The ethical objections to legally coerced drug treatment are briefly discussed before the evidence on the effectiveness of legally coerced treatment for alcohol and other drug dependence is reviewed. The evidence, which is primarily from the USA, gives qualified support for some forms of legally coerced drug treatment provided that these programs are well resourced, carefully implemented, and their performance is monitored to ensure that they provide a humane and effective alternative to imprisonment. Expectations about what these programs can achieve also need to be realistic.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
The Down syndrome (DS) immune phenotype is characterized by thymus hypotrophy, higher propensity to organ-specific autoimmune disorders, and higher susceptibility to infections, among other features. Considering that AIRE (autoimmune regulator) is located on 21q22.3, we analyzed protein and gene expression in surgically removed thymuses from 14 DS patients with congenital heart defects, who were compared with 42 age-matched controls with heart anomaly as an isolated malformation. Immunohistochemistry revealed 70.48 +/- 49.59 AIRE-positive cells/mm(2) in DS versus 154.70 +/- 61.16 AIRE-positive cells/mm(2) in controls (p < 0.0001), and quantitative PCR as well as DNA microarray data confirmed those results. The number of FOXP3-positive cells/mm(2) was equivalent in both groups. Thymus transcriptome analysis showed 407 genes significantly hypoexpressed in DS, most of which were related, according to network transcriptional analysis (FunNet), to cell division and to immunity. Immune response-related genes included those involved in 1) Ag processing and presentation (HLA-DQB1, HLA-DRB3, CD1A, CD1B, CD1C, ERAP) and 2) thymic T cell differentiation (IL2RG, RAG2, CD3D, CD3E, PRDX2, CDK6) and selection (SH2D1A, CD74). It is noteworthy that relevant AIRE-partner genes, such as TOP2A, LAMNB1, and NUP93, were found hypoexpressed in DNA microarrays and quantitative real-time PCR analyses. These findings on global thymic hypofunction in DS revealed molecular mechanisms underlying DS immune phenotype and strongly suggest that DS immune abnormalities are present since early development, rather than being a consequence of precocious aging, as widely hypothesized. Thus, DS should be considered as a non-monogenic primary immunodeficiency. The Journal of Immunology, 2011, 187: 3422-3430.
Resumo:
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.