543 resultados para glabrata
Resumo:
The evaluation of the role of rodents as natural hosts of Schistosoma mansoni was studied at the Pamparrão Valley, Sumidouro, RJ, with monthly captures and examination of the animals. Twenty-three Nectomys squamipes and 9 Akodom arviculoides with a shistosomal infection rate of 56.5% and 22.2% respectively eliminated a great majority of viable eggs. With a strain isolated from one of the naturally infected N. squamipes, we infected 75% of simpatric Biomphalaria glabrata and 100% of albino Mus musculus mice. The adult worms, isolated from N. squamipes after perfusion were located mainly in the liver (91.5%) and the mesenteric veins (8.5%). The male/female proportion was 2:1. The eggs were distributed on small intestine segments (proximal, medial and distal portions) and the large intestine without any significant differences in egg concentration of these segments. In A. arviculoides, the few eggs eliminated by the stools were viable and there was litlle egg retention on intestinal segments. Considering the ease to complete S. mansoni biological cycle in the Nectomys/Biomphalaria/Nectomys system under laboratory conditions, probably the same is likely to occur in natural conditions. In support to this hypotesis there are also the facts that human mansonic shistosomiasis has a very low prevalence in Sumidouro and endemicity among the rodents has not changed even after repetead treatments of the local patients. Based on our experiments, we conclude that N. squamipes has become a natural host of S. mansoni and possibly may participate in keeping the cycle of schistosomiasis transmission at Pamparrão Valley.
Resumo:
The Brazilian planorbidical chart is slowly but progressively been increased by new data. Distribution of vector species of Schistosoma mansoni, according to Paraense, 1986, may be thus resumed: Biomphalaria glabrata - delimited by paralells 13 and 21-S and meridians 39 and 45-W, area of greater dominance (Southerst Bahia, oriental half of Minas Gerais and Espírito Santo). It is observed along the coast line of the state of Sergipe, Alagoas, Pernambuco, Paraíba and Rio Grande do Norte. Starting from there, it is found towards the southwest, in the direction to the Sao Francisco River and South-Center of Minas Gerais. Isolated population may be observed in other states. Its presence is probably, associated to the transmission of schistosomiasis in all areas where it occurs. B. tenagophila - extends it self through a wide strip of coast-line the South of Bahia (17-45"S, 39-15'W), RS(33-41'S, 53-27'W). In Sao Paulo and Rio Grande do Sul states it is found further inland. It is important in schistosomiasis transmission in the Paraíba valley (SP). Isolated populations are observed in the Federal District and Minas Gerais state. B. straminea - better adapter species to climatic variation, having a more dense ditribution in the northeast (41-Wand 110-S), south of Bahia and northeast of Minas Gerais (150 and 180-S, 400 and 440-W) It is less susceptible than B. glabrata, being however the most important responsible for the transmission of S. mansoni in the northeast, chiefly in the northeastern dry area, where it is almost the only transmissive species.
Resumo:
The blood cells of the pulmonate snail Biomphalaria tenagophila, an important transmiter of the trematode Schistosoma mansoni in Brazil, were examined by ligth and transmission electron microscopy (TEM). Two hemocyte types were identified: hyalinocytes and granulocytes. Hyalinocytes are small young (immature), poorly spreading cells, which have a high nucleocytoplasmic ratio and are especially rich in free ribosomes. They do not appear to contain lysosome-like bodies and represent less than 10% of the circulating hemocytes. Granulocytes are larger hemocytes which readily spread on glass surface and which strongly react to the Gomori substrate, indicating the enzyme acid phosphatase usually found in lysosomes. Ultra-structurally, they contain a well-developed rough endoplasmic reticulum, dictyosomes and some some lysosome-like dense bodies. Granulocytes do not exhibit a characteristic granular aspect and the few granules observed in the cytoplasm should correspond to a lysosome system. They were named granulocytes instead of amoebocytes to use the same terminology adopted for Biomphalaria glabrata in order to make easier comparative studies. This is a preface study for more specific investigations on the functional activities of the blood cells of B. tenagophila and their interactions with the trematode parasite.
Resumo:
A population of Biomphalaria occidentalis was found for the first time in the State of Minas Gerais. It was probavly introduced into the Várzea das Flores dam, in the municipality of Contagem, the area o0f study, during fish stocking in 1985. There is possibility of "competitive exclusion"between that species and B. glabrata, previously the only Biomphalaria found in the region. The present geographical distribution of B. occidentalis in Brazil is listed.
Resumo:
Contrasting with many populations of Biomphalaria glabrata and B. straminea previously dealt with in this laboratory, which when reared in isolation deposit self-fertilized eggs without apparent restraint, isolated individuals of the former species from São Sebastião do Passé, Bahia state, and of the latter from Porto Alegre, Rio Grande do Sul state, show a high degree of self-sterility, laying egg capsules with a few usually abortive, rarely viable egg cells, or just jellylike masses without egg cells. When two individuals are paired they readily copulate, usually withing 24 hr deposit one of more egg capsules containing many eggs, and egg-laying continues up to exhaustion of stored allosperm. So far this aspect of reproductive biology has been only observed in a number of populations of the planorbid species Helisoma duryi, and should be viewed as a populational rather than specific characteristic. Since sterility is not overcome by courtship, copulation and insemination by individuals of a different species, the stimulating factor that causes ovulation in the studied self-sterile individuals is considered to be present in the conspecific allosperm.
Resumo:
The compatibility of Biomphalaria tenagophila, B. straminea and B. glabrata from Minas Gerais with different strains of Schistosoma mansoni was evaluated using the method of Frandsen (1979b) in standardized experiments. One hundred and fifty of each species of snail were individually exposed in the laboratory to 50 miracidia of S. mansoni lines LE, SJ and AL. The cercariae from the infected snails were counted and used to calculate TCP/100 indices, which were compared with those of Frandsen (1979b). For B. tenagophila the TCP/100 indices varied from 37,996 to 74,266 (class II and III). The snail was poorly compatible with LE (class II) and compatible with SJ and AL (class III). For B. straminea the indices varied from 9,484 to 20,508. The snail was not very compatible with SJ (class I) and poorly compatible with LE and AL (class II). For B. glabrata the indices varied from 588,828 to 1,039,065. The snails was extremely compatible (class VI) with the three lines of S. mansoni. These results confirm the epidemiological importance of B. glabrata in Brazil followed by B. tenagophila and B. straminea.
Resumo:
Analysis of the genomes of schistosomes and one of their intermediate hosts, Biomphalaria glabrata, using Random Amplified Polymorphic DNA (RAPD) demonstrated that intraspecific genetic polymorphism in the parasite is limited but in the snail is highly pronounced. This suggests an important role for the snail in the determination of the epidemiology of the disease. In addition to their intraspecific stability, schistosome derived RAPDs exhibit a high level of interspecific polymorphism and are thus ideal for the construction of phylogenetic trees. For the detection of intraspecific polymorphisms extensive variation in the mitochondrial DNA is being exploited for the development of a PCR based test for Schistosoma mansoni. Gene level polymorphisms are being analyzed by Low Stringency Single Specific Primer PCR.
Resumo:
Field work research on population dynamic of snails from the regions of Belo Horizonte and Lagoa Santa give much information about interactions among two or more species of mollusks: Pomacea haustrum, Biomphalaria glabrata, B. tenagophila, B. straminea and Melanoides tuberculata. Data ranging from two years to several decades ago suggest that the Pampulha reservoir is like a cemetery of B. glabrata and B. straminea, species that coexist for more than 14 years in a small part of a stream, whereas only B. glabrata lives in all the streams of the basin. In the last ten to twenty years B. tenagophila has coexisted with P. haustrum and M. tuberculata in the Serra Verde ponds and in the Pampulha dam. However these species have not settled in any of the brooks, except temporarily. The data suggest that the kind of biotope and the habitat conditions are decisive factors for the permanence of each species in its preferencial biotope. B. glabrata, natural from streams and riverheads, quickly disappears from the reservoirs and ponds where it coexists with other species for a short time, independently of the competitive process. Competition needs to be better studied, since in Central America and Caribean islands this kind of study has favored the biological control of planorbid species.
Resumo:
An antagonistic effect of voriconazole on the fungicidal activity of sequential doses of amphotericin B has previously been demonstrated in Candida albicans strains susceptible to voriconazole. Because treatment failure and the need to switch to other antifungals are expected to occur more often in infections that are caused by resistant strains, it was of interest to study whether the antagonistic effect was still seen in Candida strains with reduced susceptibility to voriconazole. With the hypothesis that antagonism will not occur in voriconazole-resistant strains, C. albicans strains with characterized mechanisms of resistance against voriconazole, as well as Candida glabrata and Candida krusei strains with differences in their degrees of susceptibility to voriconazole were exposed to voriconazole or amphotericin B alone, to both drugs simultaneously, or to voriconazole followed by amphotericin B in an in vitro kinetic model. Amphotericin B administered alone or simultaneously with voriconazole resulted in fungicidal activity. When amphotericin B was administered after voriconazole, its activity was reduced (median reduction, 61%; range, 9 to 94%). Levels of voriconazole-dependent inhibition of amphotericin B activity differed significantly among the strains but were not correlated with the MIC values (correlation coefficient, -0.19; P = 0.65). Inhibition was found in C. albicans strains with increases in CDR1 and CDR2 expression but not in the strain with an increase in MDR1 expression. In summary, decreased susceptibility to voriconazole does not abolish voriconazole-dependent inhibition of the fungicidal activity of amphotericin B in voriconazole-resistant Candida strains. The degree of interaction could not be predicted by the MIC value alone.
Resumo:
Development of Schistosoma mansoni in the intermediate host Biomphalaria glabrata is influenced by a number of parasite and snail genes. Understanding the genetics involved in this complex host/parasite relationship may lead to an often discussed approach of introducing resistant B. glabrata into the field as a means of biological control for the parasite. For the snail, juvenile susceptibility to the parasite is controlled by at least four genes, whereas one gene seems to be responsible for adult nonsusceptibility. Obtaining DNA from F2 progeny snails from crosses between parasite-resistant and-susceptible snails, we have searched for molecular markers that show linkage to either the resistant or susceptible phenotype. Both restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) approaches have been used. To date, using a variety of snail and heterologous species probes, no RFLP marker has been found that segregates with either the resistant or susceptible phenotype in F2 progeny snails. More promising results however have been found with the RAPD approach, where a 1.3 kb marker appears in nearly all resistant progeny, and a 1.1 kb marker appears in all susceptible progeny
Resumo:
Following the positive results obtained regarding the molluscicidal properties of the latex of Euphorbia splendens that were corroborated in laboratory and field tests under restricted conditions, a field study was conducted in experimental streams located in an endemic area. After recording the average annual fluctuations of vectors in three streams, a solution of E. splendens latex at 12 ppm was applied in stream A, a solution of niclosamide at 3 ppm that was applied in stream B and a third stream (C) remained untreated for negative control. Applications of E. splendens and niclosamide resulted in a mortality of 100% among the snails collected in the streams A and B. No dead snails were found in the negative control stream. A monthly follow-up survey conducted during three consecutive months confirmed the return of vectors to both experimental streams treated with latex and niclosamide. This fact has called for a need to repeat application in order to reach the snails that remained buried in the mud substrate or escaped to the water edge, as well as, newly hatched snails that did not respond to the concentration of these molluscicides. Adults snails collected a month following treatment led us to believe that they had migrate from untreated areas of the streams to those previously treated
Resumo:
Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR) amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.
Resumo:
The relationship between schistosomes and their intermediate hosts is an extremely intricate one with strains and species of the parasite depending on particular species of snail, which in turn may vary in their susceptibility to the parasites. In order to gain a better understanding of the epidemiology of the disease we have been investigating the use of molecular markers for snail identification and for studying host-parasite relationships. In this paper we will draw on examples concerning schistosomiasis in West and East Africa to illustrate how a molecular analysis can be used as part of a "total evidence" approach to characterisation of Bulinus species and provide insights into parasite transmission. Particular emphasis is given to ribosomal RNA genes (rRNA), random amplified polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI). Snails resistant to infection occur naturally and there is a genetic basis for this resistance. In Biomphalaria glabrata resistance to Schistosoma mansoni is known to be a polygenic trait and we have initiated a preliminary search for snail genomic regions linked to, or involved in, resistance by using a RAPD based approach in conjunction with progeny pooling methods. We are currently characterising a variety of STSs (sequence tagged sites) associated with resistance. These can be used for local linkage and interval mapping to define genomic regions associated with the resistance trait. The development of such markers into simple dot-blot or specific PCR-based assays may have a direct and practical application for the identification of resistant snails in natural populations.
Resumo:
Resistance and susceptibility of Biomphalaria snails to Schistosoma mansoni sporocysts occur in different degrees. Histopathology reflects these diferences. In a state of tolerance numerous sporocysts in different stages of differentiation are seen in the absence of host tissue reaction. However extensive diffuse and focal proliferation of amebocytes with sequestration and destruction of many parasitic structures appear in resistant snails. Some snails are totally resistant and when exposed to infecting miracidia may never eliminate cercarie. Sequential histopathological examination has revealed that in such cases the infected miracidia are destroyed a few minutes to 24 hr after penetration in the snail. However, B. glabrata that were exposed to S. mansoni miracidia and three moths later failed to shed cercariae, exhibited focal and diffuse proliferation of amebocytes in many organs in the absence of pasitic structures. These lesions were similar to those observed in resistant snails that were still eliminating a few cercariae, with the difference that no recognizable sporocystic structures or remmants were present. Histological investigation carried out in similarly resistant B. tenagophila and B. straminea presented essentially normal histologic structures. Only occasionally a few focal proliferative (granulomatous) amebocytic reactions were seen in ovotestis and in the tubular portion of the kidney. Probably, there are two types of reactions to miracidium presented by totally resistant snails: one would implicate the immediate destruction of the miracidium leaving no traces in the tissues; the other involving late reactions that seem to completely destroy invading sporocysts and leave histological changes.