819 resultados para giunto,intelligenza artificiale,machine learning,manutenzione predittiva
Resumo:
Analisi del mondo della guida autonoma dalle origini ad un ipotetico futuro. Introduzione ai concetti tecnici fondamentali della guida autonoma come machine learning e reti neurali. Approfondimento sul sistema di guida autonoma proprietario di Tesla chiamato "Full-Self Driving". Rapida carrellata su sistemi analoghi a quelli di Tesla sviluppati da Uber e Google.
Resumo:
Il ruolo dell’informatica è diventato chiave del funzionamento del mondo moderno, ormai sempre più in progressiva digitalizzazione di ogni singolo aspetto della vita dell’individuo. Con l’aumentare della complessità e delle dimensioni dei programmi, il rilevamento di errori diventa sempre di più un’attività difficile e che necessita l’impiego di tempo e risorse. Meccanismi di analisi del codice sorgente tradizionali sono esistiti fin dalla nascita dell’informatica stessa e il loro ruolo all’interno della catena produttiva di un team di programmatori non è mai stato cosi fondamentale come lo è tuttora. Questi meccanismi di analisi, però, non sono esenti da problematiche: il tempo di esecuzione su progetti di grandi dimensioni e la percentuale di falsi positivi possono, infatti, diventare un importante problema. Per questi motivi, meccanismi fondati su Machine Learning, e più in particolare Deep Learning, sono stati sviluppati negli ultimi anni. Questo lavoro di tesi si pone l’obbiettivo di esplorare e sviluppare un modello di Deep Learning per il riconoscimento di errori in un qualsiasi file sorgente scritto in linguaggio C e C++.
Resumo:
Il mondo della moda è in continua e costante evoluzione, non solo dal punto di vista sociale, ma anche da quello tecnologico. Nel corso del presente elaborato si è studiata la possibilità di riconoscere e segmentare abiti presenti in una immagine utilizzando reti neurali profonde e approcci moderni. Sono state, quindi, analizzate reti quali FasterRCNN, MaskRCNN, YOLOv5, FashionPedia e Match-RCNN. In seguito si è approfondito l’addestramento delle reti neurali profonde in scenari di alta parallelizzazione e su macchine dotate di molteplici GPU al fine di ridurre i tempi di addestramento. Inoltre si è sperimentata la possibilità di creare una rete per prevedere se un determinato abito possa avere successo in futuro analizzando semplicemente dati passati e una immagine del vestito in questione. Necessaria per tali compiti è stata, inoltre, una approfondita analisi dei dataset esistenti nel mondo della moda e dei metodi per utilizzarli per l’addestramento. Il presente elaborato è stato svolto nell’ambito del progetto FA.RE.TRA. per il quale l'Università di Bologna svolge un compito di consulenza per lo studio di fattibilità su reti neurali in grado di svolgere i compiti menzionati.
Resumo:
La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.
Resumo:
Many real-word decision- making problems are defined based on forecast parameters: for example, one may plan an urban route by relying on traffic predictions. In these cases, the conventional approach consists in training a predictor and then solving an optimization problem. This may be problematic since mistakes made by the predictor may trick the optimizer into taking dramatically wrong decisions. Recently, the field of Decision-Focused Learning overcomes this limitation by merging the two stages at training time, so that predictions are rewarded and penalized based on their outcome in the optimization problem. There are however still significant challenges toward a widespread adoption of the method, mostly related to the limitation in terms of generality and scalability. One possible solution for dealing with the second problem is introducing a caching-based approach, to speed up the training process. This project aims to investigate these techniques, in order to reduce even more, the solver calls. For each considered method, we designed a particular smart sampling approach, based on their characteristics. In the case of the SPO method, we ended up discovering that it is only necessary to initialize the cache with only several solutions; those needed to filter the elements that we still need to properly learn. For the Blackbox method, we designed a smart sampling approach, based on inferred solutions.
Resumo:
I recenti sviluppi nel campo dell’intelligenza artificiale hanno permesso una più adeguata classificazione del segnale EEG. Negli ultimi anni è stato dimostrato come sia possibile ottenere ottime performance di classificazione impiegando tecniche di Machine Learning (ML) e di Deep Learning (DL), facendo uso, per quest’ultime, di reti neurali convoluzionali (Convolutional Neural Networks, CNN). In particolare, il Deep Learning richiede molti dati di training mentre spesso i dataset per EEG sono limitati ed è difficile quindi raggiungere prestazioni elevate. I metodi di Data Augmentation possono alleviare questo problema. Partendo da dati reali, questa tecnica permette, la creazione di dati artificiali fondamentali per aumentare le dimensioni del dataset di partenza. L’applicazione più comune è quella di utilizzare i Data Augmentation per aumentare le dimensioni del training set, in modo da addestrare il modello/rete neurale su un numero di campioni più esteso, riducendo gli errori di classificazione. Partendo da questa idea, i Data Augmentation sono stati applicati in molteplici campi e in particolare per la classificazione del segnale EEG. In questo elaborato di tesi, inizialmente, vengono descritti metodi di Data Augmentation implementati nel corso degli anni, utilizzabili anche nell’ambito di applicazioni EEG. Successivamente, si presentano alcuni studi specifici che applicano metodi di Data Augmentation per migliorare le presentazioni di classificatori basati su EEG per l’identificazione dello stato sonno/veglia, per il riconoscimento delle emozioni, e per la classificazione di immaginazione motoria.
Resumo:
Le interfacce cervello-macchina (BMIs) permettono di guidare devices esterni utilizzando segnali neurali. Le BMIs rappresentano un’importante tecnologia per tentare di ripristinare funzioni perse in patologie che interrompono il canale di comunicazione tra cervello e corpo, come malattie neurodegenerative o lesioni spinali. Di importanza chiave per il corretto funzionamento di una BCI è la decodifica dei segnali neurali per trasformarli in segnali idonei per guidare devices esterni. Negli anni sono stati implementati diversi tipi di algoritmi. Tra questi gli algoritmi di machine learning imparano a riconoscere i pattern neurali di attivazione mappando con grande efficienza l’input, possibilmente l’attività dei neuroni, con l’output, ad esempio i comandi motori per guidare una possibile protesi. Tra gli algoritmi di machine learning ci si è focalizzati sulle deep neural networks (DNN). Un problema delle DNN è l’elevato tempo di training. Questo infatti prevede il calcolo dei parametri ottimali della rete per minimizzare l’errore di predizione. Per ridurre questo problema si possono utilizzare le reti neurali convolutive (CNN), reti caratterizzate da minori parametri di addestramento rispetto ad altri tipi di DNN con maggiori parametri come le reti neurali ricorrenti (RNN). In questo elaborato è esposto uno studio esplorante l’utilizzo innovativo di CNN per la decodifica dell’attività di neuroni registrati da macaco sveglio mentre svolgeva compiti motori. La CNN risultante ha consentito di ottenere risultati comparabili allo stato dell’arte con un minor numero di parametri addestrabili. Questa caratteristica in futuro potrebbe essere chiave per l’utilizzo di questo tipo di reti all’interno di BMIs grazie ai tempi di calcolo ridotti, consentendo in tempo reale la traduzione di un segnale neurale in segnali per muovere neuroprotesi.
Resumo:
Il lavoro di tesi presentato è nato da una collaborazione con il Politecnico di Macao, i referenti sono: Prof. Rita Tse, Prof. Marcus Im e Prof. Su-Kit Tang. L'obiettivo consiste nella creazione di un modello di traduzione automatica italiano-cinese e nell'osservarne il comportamento, al fine di determinare se sia o meno possibile l'impresa. Il trattato approfondisce l'argomento noto come Neural Language Processing (NLP), rientrando dunque nell'ambito delle traduzioni automatiche. Sono servizi che, attraverso l'ausilio dell'intelligenza artificiale sono in grado di elaborare il linguaggio naturale, per poi interpretarlo e tradurlo. NLP è una branca dell'informatica che unisce: computer science, intelligenza artificiale e studio di lingue. Dal punto di vista della ricerca, le più grandi sfide in questo ambito coinvolgono: il riconoscimento vocale (speech-recognition), comprensione del testo (natural-language understanding) e infine la generazione automatica di testo (natural-language generation). Lo stato dell'arte attuale è stato definito dall'articolo "Attention is all you need" \cite{vaswani2017attention}, presentato nel 2017 a partire da una collaborazione di ricercatori della Cornell University.\\ I modelli di traduzione automatica più noti ed utilizzati al momento sono i Neural Machine Translators (NMT), ovvero modelli che attraverso le reti neurali artificiali profonde, sono in grado effettuare traduzioni o predizioni. La qualità delle traduzioni è particolarmente buona, tanto da arrivare quasi a raggiungere la qualità di una traduzione umana. Il lavoro infatti si concentrerà largamente sullo studio e utilizzo di NMT, allo scopo di proporre un modello funzionale e che sia in grado di performare al meglio nelle traduzioni da italiano a cinese e viceversa.
Resumo:
La segmentazione prevede la partizione di un'immagine in aree strutturalmente o semanticamente coerenti. Nell'imaging medico, è utilizzata per identificare, contornandole, Regioni di Interesse (ROI) clinico, quali lesioni tumorali, oggetto di approfondimento tramite analisi semiautomatiche e automatiche, o bersaglio di trattamenti localizzati. La segmentazione di lesioni tumorali, assistita o automatica, consiste nell’individuazione di pixel o voxel, in immagini o volumi, appartenenti al tumore. La tecnica assistita prevede che il medico disegni la ROI, mentre quella automatica è svolta da software addestrati, tra cui i sistemi Computer Aided Detection (CAD). Mediante tecniche di visione artificiale, dalle ROI si estraggono caratteristiche numeriche, feature, con valore diagnostico, predittivo, o prognostico. L’obiettivo di questa Tesi è progettare e sviluppare un software di segmentazione assistita che permetta al medico di disegnare in modo semplice ed efficace una o più ROI in maniera organizzata e strutturata per futura elaborazione ed analisi, nonché visualizzazione. Partendo da Aliza, applicativo open-source, visualizzatore di esami radiologici in formato DICOM, è stata estesa l’interfaccia grafica per gestire disegno, organizzazione e memorizzazione automatica delle ROI. Inoltre, è stata implementata una procedura automatica di elaborazione ed analisi di ROI disegnate su lesioni tumorali prostatiche, per predire, di ognuna, la probabilità di cancro clinicamente non-significativo e significativo (con prognosi peggiore). Per tale scopo, è stato addestrato un classificatore lineare basato su Support Vector Machine, su una popolazione di 89 pazienti con 117 lesioni (56 clinicamente significative), ottenendo, in test, accuratezza = 77%, sensibilità = 86% e specificità = 69%. Il sistema sviluppato assiste il radiologo, fornendo una seconda opinione, non vincolante, adiuvante nella definizione del quadro clinico e della prognosi, nonché delle scelte terapeutiche.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
Recent studies have demonstrated that spatial patterns of fMRI BOLD activity distribution over the brain may be used to classify different groups or mental states. These studies are based on the application of advanced pattern recognition approaches and multivariate statistical classifiers. Most published articles in this field are focused on improving the accuracy rates and many approaches have been proposed to accomplish this task. Nevertheless, a point inherent to most machine learning methods (and still relatively unexplored in neuroimaging) is how the discriminative information can be used to characterize groups and their differences. In this work, we introduce the Maximum Uncertainty Linear Discrimination Analysis (MLDA) and show how it can be applied to infer groups` patterns by discriminant hyperplane navigation. In addition, we show that it naturally defines a behavioral score, i.e., an index quantifying the distance between the states of a subject from predefined groups. We validate and illustrate this approach using a motor block design fMRI experiment data with 35 subjects. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.