940 resultados para genotypic variance
Resumo:
Yield losses due to frost in Australian wheat crop can be high and are often associated with head-frosting. Two field experiments were conducted over two seasons to investigate the genetic variation in frost tolerance in 150 double haploid lines (DHLs) derived from a cross between Kite and Bindawarra. Glycinebetaine content in the leaf blade during frost acclimation/hardening, cell membrane damage (electrolyte leakage) after frost and grain yield were measured. Significant variation in cell membrane damage was noted (16% to 85%) which was negatively correlated with grain yield (r = - 0.43; p
Resumo:
This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.
Resumo:
Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.
Resumo:
To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.
Resumo:
Sixty coagulase-negative staphylococcus (CNS) isolates were recovered from the blood cultures or peritoneal dialysate effluent of 43 patients on renal dialysis. The patients had either renal dialysis catheter-related sepsis (CRS) or continuous ambulatory peritoneal dialysis (CAPD)-associated peritonitis. Isolates were characterized by biotyping, and genotyped by pulsed-field gel electrophoresis (PFGE). Phenotypic properties of the strains were also investigated. Several genotypes were identified with no one specific strain of CNS being associated with CRS. However, closely related strains were isolated from several patients within the units studied, suggesting horizontal transfer of micro-organisms. Genotypic macro-restriction profiles did not concur with phenotypic profiles or biotypes, confirming that genotyping is required for epidemiological studies. All staphylococcal strains were investigated for the production of phenotypic characteristics. Significant differences were predominantly seen in the production of lipase, esterase and elastase in strains isolated from the renal patients with CRS and CAPD-associated peritonitis, compared with a non-septic control group. These phenotypic characteristics may therefore have a role in the maintenance of CRS in renal patients. © 2003 The Hospital Infection Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The two-way design has been variously described as a matched-sample F-test, a simple within-subjects ANOVA, a one-way within-groups ANOVA, a simple correlated-groups ANOVA, and a one-factor repeated measures design! This confusion of terminology is likely to lead to problems in correctly identifying this analysis within commercially available software. The essential feature of the design is that each treatment is allocated by randomization to one experimental unit within each group or block. The block may be a plot of land, a single occasion in which the experiment was performed, or a human subject. The ‘blocking’ is designed to remove an aspect of the error variation and increase the ‘power’ of the experiment. If there is no significant source of variation associated with the ‘blocking’ then there is a disadvantage to the two-way design because there is a reduction in the DF of the error term compared with a fully randomised design thus reducing the ‘power’ of the analysis.
Resumo:
There is an alternative model of the 1-way ANOVA called the 'random effects' model or ‘nested’ design in which the objective is not to test specific effects but to estimate the degree of variation of a particular measurement and to compare different sources of variation that influence the measurement in space and/or time. The most important statistics from a random effects model are the components of variance which estimate the variance associated with each of the sources of variation influencing a measurement. The nested design is particularly useful in preliminary experiments designed to estimate different sources of variation and in the planning of appropriate sampling strategies.
Resumo:
Experiments combining different groups or factors are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than simply the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, in a factorial experiment, it is important to define the design of the experiment in detail because this determines the appropriate type of ANOVA. We will discuss some of the common variations of factorial ANOVA in future statnotes. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.
Resumo:
In some experimental situations, the factors may not be equivalent to each other and replicates cannot be assigned at random to all treatment combinations. A common case, called a ‘split-plot design’, arises when one factor can be considered to be a major factor and the other a minor factor. Investigators need to be able to distinguish a split-plot design from a fully randomized design as it is a common mistake for researchers to analyse a split-plot design as if it were a fully randomised factorial experiment.