984 resultados para genetic variations
Resumo:
Objectives We aimed to use simple clinical questions to group women and provide their specific rates of miscarriage, preterm delivery, and stillbirth for reference. Further, our purpose was to describe who has experienced particularly low or high rates of each event. Methods Data were collected as part of the Australian Longitudinal Study on Women's Health, a national prospective cohort. Reproductive histories were obtained from 5806 women aged 31–36 years in 2009, who had self-reported an outcome for one or more pregnancy. Age at first birth, number of live births, smoking status, fertility problems, use of in vitro fertilisation (IVF), education and physical activity were the variables that best separated women into groups for calculating the rates of miscarriage, preterm delivery, and stillbirth. Results Women reported 10,247 live births, 2544 miscarriages, 1113 preterm deliveries, and 113 stillbirths. Miscarriage was correlated with stillbirth (r = 0.09, P<0.001). The calculable rate of miscarriage ranged from 11.3 to 86.5 miscarriages per 100 live births. Women who had high rates of miscarriage typically had fewer live births, were more likely to smoke and were more likely to have tried unsuccessfully to conceive for ≥12 months. The highest proportion of live preterm delivery (32.2%) occurred in women who had one live birth, had tried unsuccessfully to conceive for ≥12 months, had used IVF, and had 12 years education or equivalent. Women aged 14–19.99 years at their first birth and reported low physical activity had 38.9 stillbirths per 1000 live births, compared to the lowest rate at 5.5 per 1000 live births. Conclusion Different groups of women experience vastly different rates of each adverse pregnancy event. We have used simple questions and established reference data that will stratify women into low- and high-rate groups, which may be useful in counselling those who have experienced miscarriage, preterm delivery, or stillbirth, plus women with fertility intent.
Resumo:
Kallikrein 14 (KLK14) has been proposed as a useful prognostic marker in prostate cancer, with expression reported to be associated with tumour characteristics such as higher stage and Gleason score. KLK14 tumour expression has also shown the potential to predict prostate cancer patients at risk of disease recurrence after radical prostatectomy. The KLKs are a remarkably hormone-responsive family of genes, although detailed studies of androgen regulation of KLK14 in prostate cancer have not been undertaken to date. Using in vitro studies, we have demonstrated that unlike many other prostatic KLK genes that are strictly androgen responsive, KLK14 is more broadly expressed and inversely androgen regulated in prostate cancer cells. Given these results and evidence that KLK14 may play a role in prostate cancer prognosis, we also investigated whether common genetic variants in the KLK14 locus are associated with risk and/or aggressiveness of prostate cancer in approximately 1200 prostate cancer cases and 1300 male controls. Of 41 single nucleotide polymorphisms assessed, three were associated with higher Gleason score (≥7): rs17728459 and rs4802765, both located upstream of KLK14, and rs35287116, which encodes a p.Gln33Arg substitution in the KLK14 signal peptide region. Our findings provide further support for KLK14 as a marker of prognosis in prostate cancer.
Resumo:
Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A1 -A6 - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1 UgIII, accounted for >60% of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species. © 2007 SGM.
Resumo:
Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.
Resumo:
The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.
Resumo:
The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the Ptrend<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r2≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.
Resumo:
Recent studies of C2 carbonaceous chondrite matrices using high resolution transmission electron microscopy (HRTEM)have shown that structural details of the matrix minerals can be imaged [1-4]. The Murchison and Mighei matrices contain minerals having ordered and disordered mixed-layer structures [1,3,4] in addition to chrysotile- and lizardite-type structures [2].
Resumo:
Background Overweight and obesity has become a serious public health problem in many parts of the world. Studies suggest that making small changes in daily activity levels such as “breaking-up” sedentary time (i.e., standing) may help mitigate the health risks of sedentary behavior. The aim of the present study was to examine time spent in standing (determined by count threshold), lying, and sitting postures (determined by inclinometer function) via the ActiGraph GT3X among sedentary adults with differing weight status based on body mass index (BMI) categories. Methods Participants included 22 sedentary adults (14 men, 8 women; mean age 26.5 ± 4.1 years). All subjects completed the self-report International Physical Activity Questionnaire to determine time spent sitting over the previous 7 days. Participants were included if they spent seven or more hours sitting per day. Postures were determined with the ActiGraph GT3X inclinometer function. Participants were instructed to wear the accelerometer for 7 consecutive days (24 h a day). BMI was categorized as: 18.5 to <25 kg/m2 as normal, 25 to <30 kg/m2 as overweight, and ≥30 kg/m2 as obese. Results Participants in the normal weight (n = 10) and overweight (n = 6) groups spent significantly more time standing (after adjustment for moderate-to-vigorous intensity physical activity and wear-time) (6.7 h and 7.3 h respectively) and less time sitting (7.1 h and 6.9 h respectively) than those in obese (n = 6) categories (5.5 h and 8.0 h respectively) after adjustment for wear-time (p < 0.001). There were no significant differences in standing and sitting time between normal weight and overweight groups (p = 0.051 and p = 0.670 respectively). Differences were not significant among groups for lying time (p = 0.55). Conclusion This study described postural allocations standing, lying, and sitting among normal weight, overweight, and obese sedentary adults. The results provide additional evidence for the use of increasing standing time in obesity prevention strategies.
Resumo:
Background: Ureaplasmas are the most frequently isolated microorganisms from the amniotic fluid (AF) of pregnant women and can cause chronic infections that are difficult to eradicate with standard macrolide treatment. We tested the effects of erythromycin treatment on phenotypic and genotypic markers of ureaplasmal antimicrobial resistance in sheep. Method: At 50 days of gestation (d, term=145d) 12 pregnant ewes received intra-amniotic injections of U. parvum serovar 3 (erythromycin-sensitive, 2x104 colony-forming-units). At 100d ewes received: erythromycin treatment (500 mg, q3h for 4 days, IM, n=6) or no treatment (n=6). Fetuses were delivered surgically (125d) and AF and chorioamnion were collected for: culture, minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) testing; 23S rRNA sequencing; and detection of macrolide-lincosamide-streptogramin resistance (MLSr) genes. Results: MICs of erythromycin, azithromycin and roxithromycin against AF isolates were low (range = 0.06 mg/L to 1.0 mg/L); however, chorioamnion isolates demonstrated increased resistance to roxithromycin (0.13 – 5.33 mg/L). 62.5% of chorioamnion ureaplasmas formed biofilms in vitro and mutations (125 nucleotides, 29.6%) were found in the 23S rRNA gene (domain V) of chorioamnion (but not AF) ureaplasmas. MLSr genes (ermB, msrC and msrD) were detected in 100% of chorioamnion isolates and only msrD was detected in AF isolates (40%). Conclusions: 23S rRNA mutations and MLSr genes occurred independently of erythromycin treatment, suggesting that the anatomical site of infection and microenvironment may exert selective pressures on ureaplasmas that cause genetic changes and alter antimicrobial sensitivity profiles. These results have serious implications for treatment of in utero infections.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.