877 resultados para frequency domain phase conjugation
Resumo:
The coupling of kurtosis based-indexes and envelope analysis represents one of the most successful and widespread procedures for the diagnostics of incipient faults on rolling element bearings. Kurtosis-based indexes are often used to select the proper demodulation band for the application of envelope-based techniques. Kurtosis itself, in slightly different formulations, is applied for the prognostic and condition monitoring of rolling element bearings, as a standalone tool for a fast indication of the development of faults. This paper shows for the first time the strong analytical connection which holds for these two families of indexes. In particular, analytical identities are shown for the squared envelope spectrum (SES) and the kurtosis of the corresponding band-pass filtered analytic signal. In particular, it is demonstrated how the sum of the peaks in the SES corresponds to the raw 4th order moment. The analytical results show as well a link with an another signal processing technique: the cepstrum pre-whitening, recently used in bearing diagnostics. The analytical results are the basis for the discussion on an optimal indicator for the choice of the demodulation band, the ratio of cyclic content (RCC), which endows the kurtosis with selectivity in the cyclic frequency domain and whose performance is compared with more traditional kurtosis-based indicators such as the protrugram. A benchmark, performed on numerical simulations and experimental data coming from two different test-rigs, proves the superior effectiveness of such an indicator. Finally a short introduction to the potential offered by the newly proposed index in the field of prognostics is given in an additional experimental example. In particular the RCC is tested on experimental data collected on an endurance bearing test-rig, showing its ability to follow the development of the damage with a single numerical index.
Resumo:
This article describes a Matlab toolbox for parametric identification of fluid-memory models associated with the radiation forces ships and offshore structures. Radiation forces are a key component of force-to-motion models used in simulators, motion control designs, and also for initial performance evaluation of wave-energy converters. The software described provides tools for preparing non-parmatric data and for identification with automatic model-order detection. The identification problem is considered in the frequency domain.
Resumo:
Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
Typical Inductive Power Transfer (IPT) systems employ two power conversion stages to generate a high frequency current from low frequency utility supply. This paper proposes a matrix converter based IPT system that facilitates the generation of high frequency current through a single power conversion stage. The proposed matrix converter topology transforms a 3-phase low frequency voltage system to a high frequency single phase voltage which in turn powers a series compensated IPT system. A comprehensive mathematical model is developed to investigate the behavior of the proposed IPT topology. Theoretical results are presented in comparison to simulations, which are performed in Matlab/ Simulink, to demonstrate the applicability of the proposed concept and the validity of the developed model.
Resumo:
Frequency domain spectroscopy (FDS) is being used to assess the insulation condition of oil–paper power transformers. However, it has to date only been implemented on de-energised transformers, which requires the transformers to be shut down for an extended period and may cause significant costs. To solve this issue, a newly improved monitoring method based on the FDS principle is proposed to implement the dielectric measurement on energised transformers. Moreover, a chirp waveform excitation and its novel processing method are introduced. Compared with the conventional FDS results, dielectric results from the energised insulation system have higher tanδ values because of the increased losses. To further understand the insulation ageing process, the effects of the geometric capacitance are removed from the measured imaginary admittance of the insulation system to enhance the ageing signature. The resulting imaginary admittance is then shown to correlate well with the central time constant in return voltage measurements results. The proposed methods address the issues on techniques used on energised transformers and provide a clue for on-line FDS diagnostic application.
Resumo:
Determining the condition as well as the remaining life of an insulation system is essential for the reliable operation of large oil-filled power transformers. Frequency-domain spectroscopy (FDS) is one of the diagnostic techniques used to identify the dielectric status of a transformer. Currently, this technique can only be implemented on a de-energized transformer. This paper presents an initial investigation into a novel online monitoring method based on FDS dielectric measurements for transformers. The proposed technique specifically aims to address the real operational constraints of online testing. This is achieved by designing an online testing model extending the basic “extended Debye” linear dielectric model and taking unique noise issues only experienced during online measurements into account via simulations. Approaches to signal denoising and potential problems expected to be encountered during online measurements will also be discussed. Using fixed-frequency sinusoidal excitation waveforms will result in a long measurement times. The use of alternatives such as a chirp has been investigated using simulations. The results presented in the paper predict that reliable measurements should be possible during online testing.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.
Resumo:
The research introduces a promising technique for monitoring the degradation status of oil-paper insulation systems of large power transformers in an online mode and innovative enhancements are also made on the existing offline measurements, which afford more direct understanding of the insulation degradation process. Further, these techniques benefit from a quick measurement owing to the chirp waveform signal application. The techniques are improved and developed on the basis of measuring the impedance response of insulation systems. The feasibility and validity of the techniques was supported by the extensive simulation works as well as experimental investigations.
Resumo:
Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Carajás railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.
Resumo:
Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.
Resumo:
Ship seakeeping operability refers to the quantification of motion performance in waves relative to mission requirements. This is used to make decisions about preferred vessel designs, but it can also be used as comprehensive assessment of the benefits of ship-motion-control systems. Traditionally, operability computation aggregates statistics of motion computed over over the envelope of likely environmental conditions in order to determine a coefficient in the range from 0 to 1 called operability. When used for assessment of motion-control systems, the increase of operability is taken as the key performance indicator. The operability coefficient is often given the interpretation of the percentage of time operable. This paper considers an alternative probabilistic approach to this traditional computation of operability. It characterises operability not as a number to which a frequency interpretation is attached, but as a hypothesis that a vessel will attain the desired performance in one mission considering the envelope of likely operational conditions. This enables the use of Bayesian theory to compute the probability of that this hypothesis is true conditional on data from simulations. Thus, the metric considered is the probability of operability. This formulation not only adheres to recent developments in reliability and risk analysis, but also allows incorporating into the analysis more accurate descriptions of ship-motion-control systems since the analysis is not limited to linear ship responses in the frequency domain. The paper also discusses an extension of the approach to the case of assessment of increased levels of autonomy for unmanned marine craft.
Resumo:
In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.