980 resultados para forest trees
Resumo:
Tropical trees have been shown to be more susceptible to warming compared to temperate species, and have shown growth and photosynthetic declines at elevated temperatures as little as 3oC above ambient. However, regional and global vegetation models lack the data needed to accurately represent physiological response to increased temperatures in tropical forests. We compared the instantaneous photosynthetic responses to elevated temperatures of four mature tropical rainforest tree species in Puerto Rico and the temperate broadleaf species sugar maple (Acer saccharum) in Michigan. Contrary to expectations, leaves in the upper canopy of both temperate and tropical forests had temperature optima that are already exceeded by mean daily leaf temperatures. This indicates that tropical and temperate forests are already seeing photosynthesis decline at mid-day temperature. This decline may worsen as air temperatures rise with climate change if trees are unable to acclimate, increasing the likelihood that forests may shift from carbon sinks to sources. A secondary study was conducted on experimentally warmed sugar maple seedlings to determine if photosynthesis had been able to acclimate to +5oC air temperature over four years. Species abundance models had predicted a decline of sugar maple within the Upper Peninsula of Michigan over the next 100 years, due to elevated temperature and altered precipitation. Instantaneous photosynthetic temperature response curves on both control and heated seedlings showed that the differences between treatments were not statistically significant, though there was a 16% increase in temperature optima and a 3% increase in maximum rates of photosynthesis in warmed plots. Though evidence of acclimation was not significant, the seedlings did not fare poorly as the models suggest.
Resumo:
Acer saccharum Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as being the predisposing and inciting factors in different regions at different times. Some of the most common factors attributed to previous maple dieback episodes were insect defoliation outbreaks, inadequate precipitation, poor soils, atmospheric deposition, fungal pathogens, poor management, or a combination of these. The current sugar maple dieback was evaluated to determine the etiology, severity, and change in dieback on both industry and public lands. A network of 120 sugar maple health evaluation plots was established in the Upper Peninsula, Michigan, northern Wisconsin, and eastern Minnesota and evaluated annually from 2009-2012. Mean sugar maple crown dieback between 2009-2012 was 12.4% (ranging from 0.8-75.5%) across the region. Overall, during the sampling period, mean dieback decreased by 5% but individual plots and trees continued to decline. Relationships were examined between sugar maple dieback and growth, habitat conditions, ownership, climate, soil, foliage nutrients, and the maple pathogen sapstreak. The only statistically significant factor was found to be a high level of forest floor impacts due to exotic earthworm activity. Sugar maple on soils with lower pH had less earthworm impacts, less dieback, and higher growth rates than those on soils more favorable to earthworms. Nutritional status of foliage and soil was correlated with dieback and growth suggesting perturbation of nutrient cycling may be predisposing or contributing to dieback. The previous winter's snowfall totals, length of stay on the ground, and number of days with freezing temperatures had a significant positive relationship to sugar maple growth rates. Sapstreak disease, Ceratocystis virescens, may be contributing to dieback in some stands but was not related to the amount of dieback in the region. The ultimate goal of this research is to help forest managers in the Great Lakes Region prevent, anticipate, reduce, and/or salvage stands with dieback and loss in the future. An improved understanding of the complex etiology associated with sugar maple dieback in the Upper Great Lakes Region is necessary to make appropriate silvicultural decisions. Forest Health education helps increase awareness and proactive forest management in the face of changing forest ecosystems. Lessons are included to assist educators in incorporating forest health into standard biological disciplines at the secondary school curricula.
Resumo:
Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.
Resumo:
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.
Resumo:
The large-crowned emergent tree Microberlinia bisulcata dominates rain forest groves at Korup National Park, Cameroon, along with two codominants, Tetraberlinia bifoliolata and T. korupensis. M. bisulcata has a pronounced modal size frequency distribution around 110 cm stem diameter: its recruitment potential is very poor. It is a long-lived light-demanding species, one of many found in African forests. Tetraberlinia species lack modality, are more shade tolerant, and recruit better. All three species are ectomycorrhizal. M. bisulcata dominates grove basal area, even though it has similar numbers of trees (≥50 cm stem diameter) as each of the other two species. This situation presented a conundrum that prompted a long-term study of grove dynamics. Enumerations of two plots (82.5 and 56.25 ha) between 1990 and 2010 showed mortality and recruitment of M. bisulcata to be very low (both rates 0.2% per year) compared with Tetraberlinia (2.4% and 0.8% per year), and M. bisulcata grows twice as fast as the Tetraberlinia. Ordinations indicated that these three species determined community structure by their strong negative associations while other species showed almost none. Ranked species abundance curves fitted the Zipf-Mandelbrot model well and allowed “overdominance” of M. bisulcata to be estimated. Spatial analysis indicated strong repulsion by clusters of large (50 to <100 cm) and very large (≥100 cm) M. bisulcata of their own medium-sized (10 to <50 cm) trees and all sizes of Tetraberlinia. This was interpreted as competition by M. bisulcata increasing its dominance, but also inhibition of its own replacement potential. Stem coring showed a modal age of 200 years for M. bisulcata, but with large size variation (50–150 cm). Fifty-year model projections suggested little change in medium, decreases in large, and increases in very large trees of M. bisulcata, accompanied by overall decreases in medium and large trees of Tetraberlinia species. Realistically increasing very-large-tree mortality led to grove collapse without short-term replacement. M. bisulcata most likely depends on climatic events to rebuild its stands: the ratio of disturbance interval to median species' longevity is important. A new theory of transient dominance explains how M. bisulcata may be cycling in abundance over time and displaying nonequilibrium dynamics.
Resumo:
Evidence of negative conspecific density dependence (NDD) operating on seedling survival and sapling recruitment has accumulated recently. In contrast, evidence of NDD operating on growth of trees has been circumstantial at best. Whether or not local NDD at the level of individual trees leads to NDD at the level of the community is still an open question. Moreover, whether and how perturbations interfere with these processes have rarely been investigated. We applied neighborhood models to permanent plot data from a Bornean dipterocarp forest censused over two 10-11 year periods. Although the first period was only lightly perturbed, a moderately strong El Nino event causing severe drought occurred in the first half of the second period. Such events are an important component of the environmental stochasticity affecting the region. We show that local NDD on growth of small-to-medium-sized trees may indeed translate to NDD at the level of the community. This interpretation is based on increasingly negative effects of bigger conspecific neighbors on absolute growth rates of individual trees with increasing basal area across the 18 most abundant overstory species in the first period. However, this relationship was much weaker in the second period. We interpreted this relaxation of local and community-level NDD as a consequence of increased light levels at the forest floor due to temporary leaf and twig loss of large trees in response to the drought event. Mitigation of NDD under climatic perturbation acts to decrease species richness, especially in forest overstory and therefore has an important role in determining species relative abundances at the site.
Resumo:
1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8x25.8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.
Resumo:
Determining the impact of insect herbivores on forest tree seedlings and saplings is difficult without experimentation in the field. Moreover, this impact may be heterogeneous in time and space because of seasonal rainfall and canopy disturbances, or ‘gaps’, which can influence both insect abundance and plant performance. In this study we used fine netting to individually protect seedlings of Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia korupensis trees (Fabaceae = Leguminosae) from insects in 41 paired gap-understorey locations across 80 ha of primary rain forest (Korup, Cameroon). For all species, growth in height and leaf numbers was negligible in the understorey, where M. bisulcata had the lowest survival after c. 2 years. In gaps, however, all species responded positively with pronounced above-ground growth across seasons. When exposed to herbivores their seedling height growth was similar, but in the absence of herbivores, M. bisulcata significantly outgrew both Tetraberlinia species and matched their leaf numbers. This result suggests that insect herbivores might play an important role in maintaining species coexistence by mitigating sapling abundance of the more palatable M. bisulcata, which in gaps was eaten the most severely. The higher ratio in static leaf damage of control-to-caged M. bisulcata seedlings in gaps than understorey locations was consistent with the Plant Vigour Hypothesis. This result, however, did not apply to either Tetraberlinia species. For M. bisulcata and T. korupensis, but not T. bifoliolata (the most shade-tolerant species), caging improved relative seedling survival in the understory locations compared to gaps, providing restricted support for the Limiting Resource Model. Approximately 2.25 years after treatments were removed, the caged seedlings were taller and had more leaves than controls in all three species, and the effect remained strongest for M. bisulcata. We conclude that in this community the impact of leaf herbivory on seedling growth in gaps is strong for the dominant M. bisulcata, which coupled to a very low shade-tolerance contributes to limiting its regeneration. However, because gaps are common to most forests, insect herbivores may be having impacts upon functionally similar tree species that are also characterized by low sapling recruitment much more widely than currently appreciated. An implication for the restoration and management of M. bisulcata populations in forests outside of Korup is that physical protection from herbivores of new seedlings where the canopy is opened by gaps, or by harvesting, should substantially increase its subcanopy regeneration, and thus, too, its opportunities for adult recruitment.
Resumo:
The importance of long-term historical information derived from paleoecological studies has long been recognized as a fundamental aspect of effective conservation. However, there remains some uncertainty regarding the extent to which paleoecology can inform on specific issues of high conservation priority, at the scale for which conservation policy decisions often take place. Here we review to what extent the past occurrence of three fundamental aspects of forest conservation can be assessed using paleoecological data, with a focus on northern Europe. These aspects are (1) tree species composition, (2) old/large trees and coarse woody debris, and (3) natural disturbances. We begin by evaluating the types of relevant historical information available from contemporary forests, then evaluate common paleoecological techniques, namely dendrochronology, pollen, macrofossil, charcoal, and fossil insect and wood analyses. We conclude that whereas contemporary forests can be used to estimate historical, natural occurrences of several of the aspects addressed here (e.g. old/large trees), paleoecological techniques are capable of providing much greater temporal depth, as well as robust quantitative data for tree species composition and fire disturbance, qualitative insights regarding old/large trees and woody debris, but limited indications of past windstorms and insect outbreaks. We also find that studies of fossil wood and paleoentomology are perhaps the most underutilized sources of information. Not only can paleoentomology provide species specific information, but it also enables the reconstruction of former environmental conditions otherwise unavailable. Despite the potential, the majority of conservation-relevant paleoecological studies primarily focus on describing historical forest conditions in broad terms and for large spatial scales, addressing former climate, land-use, and landscape developments, often in the absence of a specific conservation context. In contrast, relatively few studies address the most pressing conservation issues in northern Europe, often requiring data on the presence or quantities of dead wood, large trees or specific tree species, at the scale of the stand or reserve. Furthermore, even fewer examples exist of detailed paleoecological data being used for conservation planning, or the setting of operative restorative baseline conditions at local scales. If ecologist and conservation biologists are going to benefit to the full extent possible from the ever-advancing techniques developed by the paleoecological sciences, further integration of these disciplines is desirable.
Resumo:
We hypothesized that biodiversity improves ecosystem functioning and services such as nutrient cycling because of increased complementarity. We examined N canopy budgets of 27 Central European forests of varying dominant tree species, stand density, and tree and shrub species diversity (Shannon index) in three study regions by quantifying bulk and fine particulate dry deposition and dissolved below canopy N fluxes. Average regional canopy N retention ranged from 16% to 51%, because of differences in the N status of the ecosystems. Canopy N budgets of coniferous forests differed from deciduous forest which we attribute to differences in biogeochemical N cycling, tree functional traits and canopy surface area. The canopy budgets of N were related to the Shannon index which explained 14% of the variance of the canopy budgets of N, suggesting complementary aboveground N use of trees and diverse understorey vegetation. The relationship between plant diversity and canopy N retention varied among regional site conditions and forest types. Our results suggest that the traditional view of belowground complementarity of nutrient uptake by roots in diverse plant communities can be transferred to foliar uptake in forest canopies.
Resumo:
Although accumulating evidence indicates that local intraspecific density-dependent effects are not as rare in species-rich communities as previously suspected, there are still very few detailed and systematic neighborhood analyses of species-rich communities. Here, we provide such an analysis with the overall goal of quantifying the relative importance of inter- and intraspecific interaction strength in a primary, lowland dipterocarp forest located at Danum, Sabah, Malaysia. Using data on 10 abundant overstory dipterocarp species from two 4-ha permanent plots, we evaluated the effects of neighbors on the absolute growth rate of focal trees (from 1986 to 1996) over increasing neighborhood radii (from 1 to 20 m) with multiple regressions. Only trees 10 cm to < 100 cm girth at breast height in 1986 were considered as focal trees. Among neighborhood models with one neighbor term, models including only conspecific larger trees performed best in five out of 10 species. Negative effects of conspecific larger neighbors were most apparent in large overstory species such as those of the genus Shorea. However, neighborhood models with separate terms and radii for heterospecific and conspecific neighbors accounted for more variability in absolute growth rates than did neighborhood models with one neighbor term. The conspecific term was significant for nine out of 10 species. Moreover, in five out of 10 species, trees without conspecific neighbors had significantly higher absolute growth rates than trees with conspecific neighbors. Averaged over the 10 species, trees without conspecific neighbors grew 32.4 cm(2) in basal area from 1986 to 1996, whereas trees with conspecific neighbors only grew 14.7 cm(2) in basal area, although there was no difference in initial basal area between trees in the two groups. Averaged across the six species of the genus Shorea, negative effects of conspecific larger trees were significantly stronger than for heterospecific larger neighbors. Thus, high local densities within neighborhoods of 20 m may lead to strong intraspecific negative and, hence, density-dependent, effects even in species rich communities with low overall densities at larger spatial scales. We conjecture that the strength of conspecific effects may be correlated with the degree of host specificity of ectomycorrhizae.
Resumo:
To understand succession in dipterocarp rain forest after logging, the structure, species composition and dynamics of primary (PF) and secondary (SF) forest at Danum were compared. In 10 replicate 0.16-ha plots per forest type trees >= 10 cm gbh (3.2 cm dbh) were measured in 1995 and 2001. The SF had been logged in 1988, which allowed successional change to be recorded at 8 and 13 years. In 2001, saplings (1.0-3.1 cm dbh) were measured in nested quadrats. The forest types were similar in mean radiation at 2 m height, and in density, basal area and species number of all trees. Among small (10 <= 31.4) and large ( >= 31.4 cm gbh) trees, in both 1995 and 2001, there were 10- and 3-fold more dipterocarps in SF than PF respectively; and averaging over the two dates, there were correspondingly ca. 10- and 18-fold more pioneers. Mortality was ca. 60% higher in SF than PF, largely due to a seven-fold difference for pioneers: for dipterocarps there was little difference. Recruitment was similar in PF and SE Stem growth rates were 37% higher in SF than PF for all trees, although dipterocarps showed the opposite trend. Among saplings, dipterocarps dominated SF with a 10-fold higher density than in PF. For dipterocarps, the light (LH) and medium-heavy (MHH) canopy hardwoods, and the shade-tolerant, smaller-stature other (OTH) species (e.g. Hopea and Vatica) were in the ratios ca. 40:15:45 in SF and 85: < 1:15 in PF. LHs had higher mortality than OTHs in SE In PF ca. 80% of the saplings were LH: in SF ca. 70% were OTH. The predominance of OTHs in SF is explained by the logging of primary rain forest which was in a likely late stage of recovery from natural disturbance, plus the continuing shaded conditions in the understorey promoted by dense pioneer vegetation. At 13 years after logging succession appeared to be inhibited: LHs were being suppressed but MHHs and OTHs persisted. Succession in lowland dipterocarp, rain forests may therefore depend on the successional state of the primary forest when it is logged. A review of logged versus unlogged studies in Borneo highlights the need for more detailed ecological comparisons.
Resumo:
Occasional strong droughts are an important feature of the climatic environment of tropical rain forest in much of Borneo. This paper compares the response of a lowland dipterocarp forest at Danum, Sabah, in a period of low (LDI) and a period of high (HDI) drought intensity (1986-96, 9.98 y;1996-99, 2.62 y). Mean annual drought intensity was two-fold higher in the HDI than LDI period (1997 v. 976 mm), and each period had one moderately strong main drought (viz. 1992, 1998). Mortality of `all' trees greater than or equal to 10 cm gbh (girth at breast height) and stem growth rates of `small' trees 10less than or equal to50 cm gbh were measured in sixteen 0.16-ha subplots (half on ridge, half on lower slope sites) within two 4-ha plots. These 10-50-cm trees were composed largely of true understorey species. A new procedure was developed to correct for the effect of differences in length of census interval when comparing tree mortality rates. Mortality rates of small trees declined slightly but not significantly between the LDI and HDI periods (1.53 to 1.48% y(-1)): mortality of all trees showed a similar pattern. Relative growth rates declined significantly by 23% from LDI to HDI periods (11.1 to 8.6 mm m(-1) y(-1)): for absolute growth rates the decrease was 28% (2.45 to 1.77 mm y(-1)). Neither mortality nor growth rates were significantly influenced by topography. For small trees, across subplots, absolute growth rate was positively correlated in the LDI period, but negatively correlated in the HDI period, with mortality rate. There was no consistent pattern in the responses among the 19 most abundant species (n greater than or equal to 50 trees) which included a proposed drought-tolerant guild. In terms of tree survival, the forest at Danum was resistant to increasing drought intensity, but showed decreased stem growth attributable to increasing water stress.
Resumo:
Leafing phenology of two dry-forest sites on soils of different depth (S = shallow, D = deep) at Shipstern Reserve, Belize, were compared at the start of the rainy season (April-June 2000). Trees greater than or equal to 2.5 cm dbh were recorded weekly for 8 wk in three 0.04-ha plots per site. Ten species were analysed individually for their phenological patterns, of which the three most common were Bursera simaruba, Metopium brownei and Jatropha gaumeri. Trees were divided into those in the canopy (> 10 cm dbh) and the subcanopy (less than or equal to 10 cm dbh). Site S had larger trees on average than site D. The proportion of trees flushing leaves at any one time was generally higher in site S than in site D, for both canopy and subcanopy trees. Leaf flush started 2 wk earlier in site S than site D for subcanopy trees, but only 0.5 wk earlier for the canopy trees. Leaf flush duration was 1.5 wk longer in site S than site D. Large trees in the subcanopy flushed leaves earlier than small ones at both sites but in the canopy just at site D. Large trees flushed leaves earlier than small ones in three species and small trees flushed leaves more rapidly in two species. Bursera and Jatropha followed the general trends but Metopium, with larger trees in site D than site S, showed the converse with onset of flushing I wk earlier in site D than site S. Differences in response of the canopy and subcanopy trees on each site can be accounted for by the predominance of spring-flushing or stem-succulent species in site S and a tendency for evergreen species to occur in site D. Early flushing of relatively larger trees in site D most likely requires access to deeper soil water reserves but small and large trees utilize stored tree water in site S.
Resumo:
In a forest grove at Korup dominated by the ectomycorrhizal species Microberlinia bisulcata, an experiment tested whether phosphorus (P) was a limiting nutrient. P-fertilization of seven subplots 1995-97 was compared with seven controls. It led to large increases in soil P concentrations. Trees were measured in 1995 and 2000. M. bisulcata and four other species were transplanted into the treatments, and a wild cohort of M. bisulcata seedlings was followed in both. Leaf litter fall from trees and seedlings were analysed for nutrients. Growth of trees was not affected by added P. Transplanted seedlings survived better in the controls than added-P subplots: they did not grow better with added-P.M. bisulcata wildlings survived slightly better in the added-P subplots in yr 1 but not later. Litter fall and transplanted survivors had much higher concentrations of P (not N) in the added-P than control subplots. Under current conditions, it appears that P does not limit growth of trees or hinder seedling establishment, especially of M. bisculcata, in these low-P grove soils.