911 resultados para foreground background segmentation
Resumo:
La microscopie par fluorescence de cellules vivantes produit de grandes quantités de données. Ces données sont composées d’une grande diversité au niveau de la forme des objets d’intérêts et possèdent un ratio signaux/bruit très bas. Pour concevoir un pipeline d’algorithmes efficaces en traitement d’image de microscopie par fluorescence, il est important d’avoir une segmentation robuste et fiable étant donné que celle-ci constitue l’étape initiale du traitement d’image. Dans ce mémoire, je présente MinSeg, un algorithme de segmentation d’image de microscopie par fluorescence qui fait peu d’assomptions sur l’image et utilise des propriétés statistiques pour distinguer le signal par rapport au bruit. MinSeg ne fait pas d’assomption sur la taille ou la forme des objets contenus dans l’image. Par ce fait, il est donc applicable sur une grande variété d’images. Je présente aussi une suite d’algorithmes pour la quantification de petits complexes dans des expériences de microscopie par fluorescence de molécules simples utilisant l’algorithme de segmentation MinSeg. Cette suite d’algorithmes a été utilisée pour la quantification d’une protéine nommée CENP-A qui est une variante de l’histone H3. Par cette technique, nous avons trouvé que CENP-A est principalement présente sous forme de dimère.
Resumo:
Les néphropaties (maladie des tissus rénaux) postradiques constituent l'un des facteurs limitants pour l'élaboration des plans de traitement lors des radiothérapies abdominales. Le processus actuel, qui consiste à évaluer la fonctionnalité relative des reins grâce à une scintigraphie gamma deux dimensions, ne permet pas d'identifier les portions fonctionnelles qui pourraient être évitées lors de l' élaboration des plans de traitement. Une méthode permettant de cartographier la fonctionnalité rénale en trois dimensions et d'extraire un contour fonctionnel utilisable lors de la planification a été développée à partir de CT double énergie injectés à l'iode. La concentration en produit de contraste est considérée reliée à la fonctionnalité rénale. La technique utilisée repose sur la décomposition à trois matériaux permettant de reconstruire des images en concentration d'iode. Un algorithme de segmentation semi-automatisé basé sur la déformation hiérarchique et anamorphique de surfaces permet ensuite d'extraire le contour fonctionnel des reins. Les premiers résultats obtenus avec des images patient démontrent qu'une utilisation en clinique est envisageable et pourra être bénéfique.
Resumo:
Alors que l’intérêt pour les processus d’intégration des immigrants et des minorités ethniques est en pleine croissance parmi les chercheurs européens, les facteurs qui expliquent les différentes formes de participation civique et politique doivent être examinés plus en profondeur. Prenant pour base la littérature sur l’immigration, cette étude examine la question de recherche suivante: Comment peut-on expliquer les variations des formes de participation civique et politique des activistes issus de l’immigration au niveau local? Afin de répondre à cette question, cette étude identifie les formes de participation de la part d’activistes issus de l’immigration dans quatre villes Italiennes et examine les discours et les pratiques de multiples acteurs impliqués dans le domaine de l’immigration dans un contexte national d’hostilité croissante. Cette thèse soutient que pour comprendre différentes formes de participation, il est important de considérer non seulement l’État et les acteurs institutionnels, mais aussi les acteurs non-institutionnels et examiner comment ces derniers influencent les opportunités ainsi que les restrictions à la participation. Par ailleurs, cette recherche examine les canaux conventionnels et non-conventionnels dans quatre villes italiennes et étudie les activistes issus de l’immigration comme des acteurs politiques pertinents, capables de se mobiliser et d’influencer la participation à travers leur interaction et alliances avec les acteurs de la société d’accueil. Cette recherche a permis de produire trois résultats. Le premier montre que les approches d’intégration adoptées par les acteurs sont importantes. Cette étude a identifié trois approches d’intégration: 1) « welfariste », basée sur l’idée que les immigrants sont dans le besoin et doivent donc recevoir des services; 2) interculturelle, basée sur l’idée que les immigrants sont de futurs citoyens et que l’intégration est réciproque; 3) promotion des droits politiques, basée sur l’idée que les immigrants ont des droits politiques fondamentaux ; et qui encourage l’ouverture des canaux de participation politique, surtout aux immigrants privés du droit de vote local. L’analyse empirique démontre que, alors que l’approche welfariste n’encourage pas la participation parce qu’elle conçoit les immigrants comme des acteurs passifs, les autres deux approches ont respectivement un impact sur les formes de participation civique et politique. La deuxième conclusion souligne le rôle des acteurs de gauche. En particulier, cette étude montre que les acteurs qui ouvrent de canaux pour la participation ne sont pas uniquement les acteurs de gauche modérée, comme les autorités locales, les partis politiques et les syndicats, mais aussi les groupes de gauche radicale et non-institutionnelle. Chaque acteur de gauche comprend et agit différemment par rapport aux sujets de l’immigration et de la participation et ce fait influence comment les activistes issues de l’immigration se mobilisent. La troisième conclusion met en évidence le rôle de la perception des opportunités par les activistes issus de l’immigration et la façon avec laquelle ils s’approprient les discours et les pratiques des acteurs de gauche. Ce travail démontre que l’ouverture de canaux est possible grâce à l’engagement de personnes issues de l’immigration qui agissent à travers les opportunités qui leurs sont offertes, créent des alliances avec la gauche et défient les discours et pratiques des acteurs locaux.
Resumo:
Le foie est un organe vital ayant une capacité de régénération exceptionnelle et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume du foie est un outil important pouvant être utilisé comme marqueur biologique de sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les hépatectomies majeures, l’embolisation de la veine porte et la transplantation. La méthode la plus répandue sur la base d'examens de tomodensitométrie (TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le contour du foie sur plusieurs coupes consécutives, un processus appelé la «segmentation». Nous présentons la conception et la stratégie de validation pour une méthode de segmentation semi-automatisée développée à notre institution. Notre méthode représente une approche basée sur un modèle utilisant l’interpolation variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre méthode semi-automatisée de segmentation avec deux études transversales conçues rétrospectivement. Les résultats de nos études de validation suggèrent que la méthode de segmentation confère une fiabilité et répétabilité comparables à la segmentation manuelle. De plus, cette méthode diminue de façon significative le temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. D’autres études pourraient incorporer la volumétrie afin de déterminer des marqueurs biologiques de maladie hépatique basés sur le volume tels que la présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume.
Resumo:
Study Design Cross-sectional descriptive study. Objectives To characterize breast asymmetry (BA), as defined by breast volume difference, in girls with significant adolescent idiopathic scoliosis (AIS), using magnetic resonance imaging (MRI). Summary and Background BA is a frequent concern among girls with AIS. It is commonly believed that this results from chest wall deformity. Although many women exhibit physiological BA, the prevalence is not known in adolescents and it remains unclear if it is more frequent in AIS. Breasts vary in shape and size and many ways of measuring them have been explored. MRI shows the highest precision at defining breast tissue. Methods Thirty patients were enrolled on the basis of their thoracic curvature, skeletal and breast maturity, without regard to their perception on their BA. MRI acquisitions were performed in prone with a 1.5-Tesla system using a 16-channel breast coil. Segmentation was achieved using the ITK-SNAP 2.4.0 software and subsequently manually refined. Results The mean left breast volume (528.32 ± 205.96 cc) was greater compared with the mean right breast volume (495.18 ± 170.16 cc) with a significant difference between them. The mean BA was found to be 8.32% ± 6.43% (p < .0001). A weak positive correlation was observed between BA and thoracic Cobb angle (0.177, p = .349) as well as thoracic gibbosity angle (0.289, p = .122). The left breast was consistently larger in 65.5% of the patients. Twenty patients (66.7%) displayed BA ≥5%. Conclusions We have described BA in patients with significant AIS using MRI. This method is feasible, objective, and very precise. The majority of patients had a larger left breast, which could compound the apparent BA secondary to trunk rotation. In many cases, BA is present independently of thoracic deformity. This knowledge will assist in counseling AIS patients in regards to their concerns with BA.
Resumo:
The Andaman-Nicobar Islands in the Bay of Bengal lies in a zone where the Indian plate subducts beneath the Burmese microplate, and therefore forms a belt of frequent earthquakes. Few efforts, not withstanding the available historical and instrumental data were not effectively used before the Mw 9.3 Sumatra-Andaman earthquake to draw any inference on the spatial and temporal distribution of large subduction zone earthquakes in this region. An attempt to constrain the active crustal deformation of the Andaman-Nicobar arc in the background of the December 26, 2004 Great Sumatra-Andaman megathrust earthquake is made here, thereby presenting a unique data set representing the pre-seismic convergence and co-seismic displacement.Understanding the mechanisms of the subduction zone earthquakes is both challenging sCientifically and important for assessing the related earthquake hazards. In many subduction zones, thrust earthquakes may have characteristic patterns in space and time. However, the mechanism of mega events still remains largely unresolved.Large subduction zone earthquakes are usually associated with high amplitude co-seismic deformation above the plate boundary megathrust and the elastic relaxation of the fore-arc. These are expressed as vertical changes in land level with the up-dip part of the rupture surface uplifted and the areas above the down-dip edge subsided. One of the most characteristic pattern associated with the inter-seismic era is that the deformation is in an opposite sense that of co-seismic period.This work was started in 2002 to understand the tectonic deformation along the Andaman-Nicobar arc using seismological, geological and geodetic data. The occurrence of the 2004 megathrust earthquake gave a new dimension to this study, by providing an opportunity to examine the co-seismic deformation associated with the greatest earthquake to have occurred since the advent of Global Positioning System (GPS) and broadband seismometry. The major objectives of this study are to assess the pre-seismic stress regimes, to determine the pre-seismic convergence rate, to analyze and interpret the pattern of co-seismic displacement and slip on various segments and to look out for any possible recurrence interval for megathrust event occurrence for Andaman-Nicobar subduction zone. This thesis is arranged in six chapters with further subdivisions dealing all the above aspects.
Resumo:
The research problem selected for this study is one of the important issues in the field of financial market and its marketing dimensions on which researchers and academicians encourage more research studies. This research study may be relevant considering its significance in terms of some possible findings which may be useful to Fls in framing successful market segmentation approach to turn their dissatisfied and ‘merely' satisfied customers into ‘delighted’ customers, which in turn can result in better savings mobilisation. The household segments may also be benefited from the research findings if they bring about an attitudinal change in their savings behaviour. The importance of the study may be briefly highlighted in the following points. The research study examines existing theories on market segmentation by Fls and the findings might supplement the existing theories on this topic. The study brings to light certain clues to strengthen market segmentation approach of Fls.The study throws light on the existing beliefs and perceptions on customer behaviour which may be useful in effecting some positive changes in market segmentation approach by Fls. The study suggests certain relationship between market segmentation variables and customer behaviour in the context of marketing of financial products by Fls. The study supplements the existing knowledge on different dimension of market segmentation in the financial market which might encourage future research in the field.
Resumo:
The understanding of the theory of entrepreneurship depends upon one set of definitions which provide the base for analytical study. The main objective of the study was to understand the distribution of entrepreneurship in the manufacturing sector among different categories of people in kerala and to differentiate the socio - psychological background of successful entrepreneur- managers from unsuccessful entrepreneur-managers. The purpose of the study, a sample of 150 entrepreneur-managers of SS1 units spread over Ernakulam district was surveyed through a specially designed questionnaire.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis
Resumo:
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.
Resumo:
Implications between attributes can represent knowledge about objects in a specified context. This knowledge representation is especially useful when it is not possible to list all specified objects. Attribute exploration is a tool of formal concept analysis that supports the acquisition of this knowledge. For a specified context this interactive procedure determines a miminal list of valid implications between attributes of this context together with a list of objects which are counterexamples for all implications not valid in the context. This paper describes how the exploration can be modified such that it determines a mimimal set of implications that fills the gap between previously given implications (called background implications) and all valid implications. The list of implications can be simplified further if exceptions are allowed for the implications.
Resumo:
Segmentation of medical imagery is a challenging problem due to the complexity of the images, as well as to the absence of models of the anatomy that fully capture the possible deformations in each structure. Brain tissue is a particularly complex structure, and its segmentation is an important step for studies in temporal change detection of morphology, as well as for 3D visualization in surgical planning. In this paper, we present a method for segmentation of brain tissue from magnetic resonance images that is a combination of three existing techniques from the Computer Vision literature: EM segmentation, binary morphology, and active contour models. Each of these techniques has been customized for the problem of brain tissue segmentation in a way that the resultant method is more robust than its components. Finally, we present the results of a parallel implementation of this method on IBM's supercomputer Power Visualization System for a database of 20 brain scans each with 256x256x124 voxels and validate those against segmentations generated by neuroanatomy experts.
Resumo:
Sketches are commonly used in the early stages of design. Our previous system allows users to sketch mechanical systems that the computer interprets. However, some parts of the mechanical system might be too hard or too complicated to express in the sketch. Adding speech recognition to create a multimodal system would move us toward our goal of creating a more natural user interface. This thesis examines the relationship between the verbal and sketch input, particularly how to segment and align the two inputs. Toward this end, subjects were recorded while they sketched and talked. These recordings were transcribed, and a set of rules to perform segmentation and alignment was created. These rules represent the knowledge that the computer needs to perform segmentation and alignment. The rules successfully interpreted the 24 data sets that they were given.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.