956 resultados para flat starts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3**2- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3**2- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3/m**2/h and dissolution ranged from -0.05 to -3.3 mmol CaCO3/m**2/h. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3**2- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3**2- and pCO2. Threshold pCO2 and CO3**2- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3**2- threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3**2- indicate that CO3**2- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-resolution marine isotope climate record indicates pronounced global cooling during the Langhian (16-13.8 Ma), beginning with the warm middle Miocene climatic optimum and ending with significant Antarctic ice sheet expansion and the transition to "icehouse" conditions. Terrestrial paleoclimate data from this interval is sparse and sometimes conflicting. In particular, there are gaps in the terrestrial record in the Pacific Northwest during the late Langhian and early Serravallian between about 14.5 and 12.5 Ma. New terrestrial paleoclimate data from this time and region could reconcile these conflicting records. Paleosols are particularly useful for reconstructing paleoenvironment because the rate and style of pedogenesis is primarily a function of surface environmental conditions; however, complete and well-preserved paleosols are uncommon. Most soils form in erosive environments that are not preserved, or in environments such as floodplains that accumulate in small increments; the resulting cumulic soils are usually thin, weakly developed, and subject to diagenetic overprinting from subsequent soils. The paleosol at Cricket Flat in northeastern Oregon is an unusually complete and well-preserved paleosol from a middle Miocene volcanic sequence in the Powder River Volcanic Field. An olivine basalt flow buried the paleosol at approximately 13.8 ± 0.6 Ma, based on three 40Ar/39Ar dates on the basalt. We described the Cricket Flat paleosol and used its physical and chemical profile and micromorphology to assess pedogenesis. The Cricket Flat paleosol is an Ultisol-like paleosol, chemically consistent with a high degree of weathering. Temperature and rainfall proxies suggest that Cricket Flat received 1120 ± 180 mm precipitation y-1 and experienced a mean annual temperature of 14.5 ± 2.1 °C during the formation of the paleosol, significantly warmer and wetter than today. This suggests slower cooling after the middle Miocene climatic optimum than is seen in the existing paleosol record.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the material models most frequently used for the numerical simulation of the behavior of concrete when subjected to high strain rates have been originally developed for the simulation of ballistic impact. Therefore, they are plasticity-based models in which the compressive behavior is modeled in a complex way, while their tensile failure criterion is of a rather simpler nature. As concrete elements usually fail in tensión when subjected to blast loading, available concrete material models for high strain rates may not represent accurately their real behavior. In this research work an experimental program of reinforced concrete fíat elements subjected to blast load is presented. Altogether four detonation tests are conducted, in which 12 slabs of two different concrete types are subjected to the same blast load. The results of the experimental program are then used for the development and adjustment of numerical tools needed in the modeling of concrete elements subjected to blast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effective width of reinforced concrete flat slab structures subjected to seismic loading on the basis of dynamic shaking table tests. The study is focussed on the behavior of corner slab? column connections with structural steel I- or channel-shaped sections (shearheads) as shear punching reinforcement. To this end, a 1/2 scale test model consisting of a flat slab supported on four box-type steel columns was subjected to several seismic simulations of increasing intensity. It is found from the test results that the effective width tends to increase with the intensity of the seismic simulation, and this increase is limited by the degradation of adherence between reinforcing steel and concrete induced by the strain reversals caused by the earthquake. Also, significant differences are found between the effective width obtained from the tests and the values predicted by formula proposed in the literature. These differences are attributed to the stiffening effect provided by the steel profiles that constitute the punching shear reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of computational fluid dynamic (CFD) methods to predict the power production from wind entire wind farms in flat and complex terrain is presented in this paper. Two full 3D Navier–Stokes solvers for incompressible flow are employed that incorporate the k–ε and k–ω turbulence models respectively. The wind turbines (W/Ts) are modelled as momentum absorbers by means of their thrust coefficient using the actuator disk approach. The WT thrust is estimated using the wind speed one diameter upstream of the rotor at hub height. An alternative method that employs an induction-factor based concept is also tested. This method features the advantage of not utilizing the wind speed at a specific distance from the rotor disk, which is a doubtful approximation when a W/T is located in the wake of another and/or the terrain is complex. To account for the underestimation of the near wake deficit, a correction is introduced to the turbulence model. The turbulence time scale is bounded using the general “realizability” constraint for the turbulent velocities. Application is made on two wind farms, a five-machine one located in flat terrain and another 43-machine one located in complex terrain. In the flat terrain case, the combination of the induction factor method along with the turbulence correction provides satisfactory results. In the complex terrain case, there are some significant discrepancies with the measurements, which are discussed. In this case, the induction factor method does not provide satisfactory results.