972 resultados para first order condition
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Artificial neural networks (ANN) have demonstrated good predictive performance in a wide range of applications. They are, however, not considered sufficient for knowledge representation because of their inability to represent the reasoning process succinctly. This paper proposes a novel methodology Gyan that represents the knowledge of a trained network in the form of restricted first-order predicate rules. The empirical results demonstrate that an equivalent symbolic interpretation in the form of rules with predicates, terms and variables can be derived describing the overall behaviour of the trained ANN with improved comprehensibility while maintaining the accuracy and fidelity of the propositional rules.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.
Resumo:
The soil C saturation concept suggests a limit to whole soil organic carbon (SOC) accumulation determined by inherent physicochemical characteristics of four soil C pools: unprotected, physically protected, chemically protected, and biochemically protected. Previous attempts to quantify soil C sequestration capacity have focused primarily on silt and clay protection and largely ignored the effects of soil structural protection and biochemical protection. We assessed two contrasting models of SOC accumulation, one with no saturation limit (i.e., linear first-order model) and one with an explicit soil C saturation limit (i.e., C saturation model). We isolated soil fractions corresponding to the C pools (i.e., free particulate organic matter POM], microaggregate-associated C, silt- and clay-associated C, and non-hydrolyzable C) from eight long-term agroecosystern experiments across the United States and Canada. Due to the composite nature of the physically protected C pool, we firactioned it into mineral- vs. POM-associated C. Within each site, the number of fractions fitting the C saturation model was directly related to maximum SOC content, suggesting that a broad range in SOC content is necessary to evaluate fraction C saturation. The two sites with the greatest SOC range showed C saturation behavior in the chemically, biochemically, and some mineral-associated fractions of the physically protected pool. The unprotected pool and the aggregate-protected POM showed linear, nonsaturating behavior. Evidence of C saturation of chemically and biochemically protected SOC pools was observed at sites far from their theoretical C saturation level, while saturation of aggregate-protected fractions occurred in soils closer to their C saturation level.
Resumo:
We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.
Resumo:
We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.
Resumo:
The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Endocytosis is the process by which cells internalise molecules including nutrient proteins from the extracellular media. In one form, macropinocytosis, the membrane at the cell surface ruffles and folds over to give rise to an internalised vesicle. Negatively charged phospholipids within the membrane called phosphoinositides then undergo a series of transformations that are critical for the correct trafficking of the vesicle within the cell, and which are often pirated by pathogens such as Salmonella. Advanced fluorescent video microscopy imaging now allows the detailed observation and quantification of these events in live cells over time. Here we use these observations as a basis for building differential equation models of the transformations. An initial investigation of these interactions was modelled with reaction rates proportional to the sum of the concentrations of the individual constituents. A first order linear system for the concentrations results. The structure of the system enables analytical expressions to be obtained and the problem becomes one of determining the reaction rates which generate the observed data plots. We present results with reaction rates which capture the general behaviour of the reactions so that we now have a complete mathematical model of phosphoinositide transformations that fits the experimental observations. Some excellent fits are obtained with modulated exponential functions; however, these are not solutions of the linear system. The question arises as to how the model may be modified to obtain a system whose solution provides a more accurate fit.
Resumo:
The uncertainty associated with how projected climate change will affect global C cycling could have a large impact on predictions of soil C stocks. The purpose of our study was to determine how various soil decomposition and chemistry characteristics relate to soil organic matter (SOM) temperature sensitivity. We accomplished this objective using long-term soil incubations at three temperatures (15, 25, and 35°C) and pyrolysis molecular beam mass spectrometry (py-MBMS) on 12 soils from 6 sites along a mean annual temperature (MAT) gradient (2–25.6°C). The Q10 values calculated from the CO2 respired during a long-term incubation using the Q10-q method showed decomposition of the more resistant fraction to be more temperature sensitive with a Q10-q of 1.95 ± 0.08 for the labile fraction and a Q10-q of 3.33 ± 0.04 for the more resistant fraction. We compared the fit of soil respiration data using a two-pool model (active and slow) with first-order kinetics with a three-pool model and found that the two and three-pool models statistically fit the data equally well. The three-pool model changed the size and rate constant for the more resistant pool. The size of the active pool in these soils, calculated using the two-pool model, increased with incubation temperature and ranged from 0.1 to 14.0% of initial soil organic C. Sites with an intermediate MAT and lowest C/N ratio had the largest active pool. Pyrolysis molecular beam mass spectrometry showed declines in carbohydrates with conversion from grassland to wheat cultivation and a greater amount of protected carbohydrates in allophanic soils which may have lead to differences found between the total amount of CO2 respired, the size of the active pool, and the Q10-q values of the soils.
Resumo:
We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.
Resumo:
We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, “to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice” (Gable et al, 2006). IS-Impact is defined as “a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups” (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the “impact” half includes Organizational-Impact and Individual-Impact dimensions; the “quality” half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalizable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employ perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalization of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. The objective of this study is to develop a Mandarin version IS-Impact model, encompassing a list of China-specific IS-Impact measures, aiding in a better understanding of the IS-Impact phenomenon in a Chinese organizational context. The IS-Impact model provides a much needed theoretical guidance for this investigation of ES and ES impacts in a Chinese context. The appropriateness and soundness of employing the IS-Impact model as a theoretical foundation are evident: the model originated from a sound theory of IS Success (1992), developed through rigorous validation, and also derived in the context of Enterprise Systems. Based on the IS-Impact model, this study investigates a number of research questions (RQs). Firstly, the research investigated what essential impacts have been derived from ES by Chinese users and organizations [RQ1]. Secondly, we investigate which salient quality features of ES are perceived by Chinese users [RQ2]. Thirdly, we seek to answer whether the quality and impacts measures are sufficient to assess ES-success in general [RQ3]. Lastly, the study attempts to address whether the IS-Impact measurement model is appropriate for Chinese organizations in terms of evaluating their ES [RQ4]. An open-ended, qualitative identification survey was employed in the study. A large body of short text data was gathered from 144 Chinese users and 633 valid IS-Impact statements were generated from the data set. A generally inductive approach was applied in the qualitative data analysis. Rigorous qualitative data coding resulted in 50 first-order categories with 6 second-order categories that were grounded from the context of Chinese organization. The six second-order categories are: 1) System Quality; 2) Information Quality; 3) Individual Impacts;4) Organizational Impacts; 5) User Quality and 6) IS Support Quality. The final research finding of the study is the contextualized Mandarin version IS-Impact measurement model that includes 38 measures organized into 4 dimensions: System Quality, information Quality, Individual Impacts and Organizational Impacts. The study also proposed two conceptual models to harmonize the IS-Impact model and the two emergent constructs – User Quality and IS Support Quality by drawing on previous IS effectiveness literatures and the Work System theory proposed by Alter (1999) respectively. The study is significant as it is the first effort that empirically and comprehensively investigates IS-Impact in China. Specifically, the research contributions can be classified into theoretical contributions and practical contributions. From the theoretical perspective, through qualitative evidence, the study test and consolidate IS-Impact measurement model in terms of the quality of robustness, completeness and generalizability. The unconventional research design exhibits creativity of the study. The theoretical model does not work as a top-down a priori seeking for evidence demonstrating its credibility; rather, the study allows a competitive model to emerge from the bottom-up and open-coding analysis. Besides, the study is an example extending and localizing pre-existing theory developed in Western context when the theory is introduced to a different context. On the other hand, from the practical perspective, It is first time to introduce prominent research findings in field of IS Success to Chinese academia and practitioner. This study provides a guideline for Chinese organizations to assess their Enterprise System, and leveraging IT investment in the future. As a research effort in ITPS track, this study contributes the research team with an alternative operationalization of the dependent variable. The future research can take on the contextualized Mandarin version IS-Impact framework as a theoretical a priori model, further quantitative and empirical testing its validity.