913 resultados para finite buffers
Resumo:
This report is intended to shed more light on the ongoing water struggle in Caimanes, a small urban area in the central northern area of Chile, neighbouring Latin America’s biggest tailings dam. Undoubtedly, the water in Caimanes is running out and the conflict between the opponents of the dam and its owner, a multinational copper enterprise, is getting more and more attention by the national and also international media. In the discussion a judgment of the Chilean Supreme Court from last October plays a central role, because it is said to have granted the people from Caimanes their right to water. After a short introduction with some details about Camaines and the tailings from the dam El Mauro, the key points of this judgment shall be outlined. The final part of the report is dedicated to various institutional problems of the Chilean resources law and policy that can become virulent for the water supply and the environmental well-being of many other urban areas in the industrialized north of Chile.
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.
Resumo:
Using a panel of Colombian banks and quarterly data between 1996:1 and 2010:3, we study the relationship between short-run adjustemnts in bank capital buffers and the business cycle. We follow a partial adjustment framework and control for several variables that have been identified as important determinants of bank capital buffers in previous studies, and find that bank capital buffers vary over the business cycle. We are able to identify a negative co-movement of capital buffers and and the business cycle. However, we also find that capital buffers of small and large banks behave asymmetrically during the business cycle. While the former appear to be constant over time, once the appropriate set of control variables is used, the latter present a countercyclical behavior. Our results suggest the possible need of the implementation of regulatory policy measures in developing countries
Resumo:
A simple extended finite field nuclear relaxation procedure for calculating vibrational contributions to degenerate four-wave mixing (also known as the intensity-dependent refractive index) is presented. As a by-product one also obtains the static vibrationally averaged linear polarizability, as well as the first and second hyperpolarizability. The methodology is validated by illustrative calculations on the water molecule. Further possible extensions are suggested
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence
Resumo:
This paper investigates finite-stretching corrections to the classical Milner-Witten-Cates theory for semi-dilute polymer brushes in a good solvent. The dominant correction to the free energy originates from an entropic repulsion caused by the impenetrability of the grafting surface, which produces a depletion of segments extending a distance $\mu \propto L^{-1}$ from the substrate, where $L$ is the classical brush height. The next most important correction is associated with the translational entropy of the chain ends, which creates the well-known tail where a small population of chains extend beyond the classical brush height by a distance $\xi \propto L^{-1/3}$. The validity of these corrections is confirmed by quantitative comparison with numerical self-consistent field theory.
Resumo:
The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite-element velocity/surface-elevation pairs that are used to approximate the linear shallow-water equations. For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained for the consistent schemes (without lumping) and the continuous case. The P0-P1, RT0 and P-P1 pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to simulate fast gravity and slow Rossby waves are in good agreement with the analytical results.
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?