738 resultados para fatty acid synthase
Resumo:
Red porgy has been proposed as a candidate for diversification of marine aquaculture production (Hernández-Cruz et al., 1999). However, limited larval survival together with the elevated levels of skeletal deformities occurrence (over 50% of the population), under intensive or semi-intensive systems constitute the major bottlenecks for the production of this species at commercial scale (Roo et al., in press). Essential fatty imbalances on early life stages, may alter the osteological development of reared larvae (Cahu et al., 2003). The objective of this study was to determine the effect of rotifers enrichment, particularly on DHA, on growth, survival and occurrence of skeleton deformities in red porgy.
Resumo:
[EN] Octopus "paralarvae", are planktonic, swim actively and have high metabolic rates, requiring large quantities of live prey of adequate motility and nutritional quality ( Iglesias et al., 2000; Navarro and Villanueva, 2000, 2003). During the planktonic phase, they undergo strong morphological changes, after which the octopuses start settling to the bottom. The potential of Octopus vulgaris as candiadate for diversification of marine aquacultures are mainly due to its high food conversion rate and fast growth.( Iglesias et al 2006). Despite the research effort taken until now, paralarval rearing of O. vulgaris still suffers high mortalities which limited the industrial culture of this species. The main problems in the paralarval rearing stages are the high mortality rates and poor growth. These are attributed to the lack of standardized culture techniques and nutritional deficiencies in the diet of paralarvae, especially in n-3 highly unsaturated fatty acids (n-3 HUFA). The objective if this experience was to test different commercial live prey enrichment to improve nutritional quality of the artemia.
Resumo:
[EN] Octopus vulgaris is a suitable candidate to diversify marine aquaculture (Iglesias et al., 2000; Vaz Pires et al. 2004). Actually, wild sub-adults are on-growing in floating cages showing promising results (Chapela et al., 2006; Rodríguez et al., 2006). Even though octopus industrial development is still limited, mainly associated to the dependence of wild catch individuals for ongrowing (Iglesias et al., 2007) and a lack of an appropriate formulated diet (García García and Cerezo, 2006). In addition, essential macronutrient requirements for this species are still not well known. Used of discarded bogue as single food for Octopus on-growth results in similar growth than co-fed diets with the crab (Portunus pelagic). FA content of Muscle and DG showed important ARA content, suggesting the important functions of this FA in this specie.
Resumo:
[EN]The present study aimed to evaluate the effect of the supplementation of different crab zoeas to enriched Artemia basal diet for O. vulgaris paralarvae during the first month of life. Paralarvae were fed using: enriched Artemia nauplii alone and Artemia co-fed with either first zoea stages of Grapsus adscensionis or Plagusia depressa. The experiment was carried out over a period of 28 days, in 0.12 m3 tanks with a flow-through rearing system. Growth in dry weightas well as mantle length and width were assessed weekly. Additionally, prey and paralarvae fatty acid composition and digestive gland (DG) histology were evaluated.
Resumo:
The structural peculiarities of a protein are related to its biological function. In the fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl intermediates from one enzyme to the other. The carrier has to recognize several enzymatic counterparts, specifically interact with each of them, and finally transiently deliver the carried substrate to the active site. Carry out such a complex game requires the players to be flexible and efficiently adapt their structure to the interacting protein or substrate. In a drug discovery effort, the structure-function relationships of a target system should be taken into account to optimistically interfere with its biological function. In this doctoral work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in Plasmodium falciparum is investigated by means of molecular simulations. The key steps considered include the delivery of acyl substrates and the structural rearrangements of catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme recognition and interaction are also put forward. The structural features of the target have driven the selection of proper drug discovery tools, which captured the dynamics of biological processes and could allow the rational design of novel inhibitors. The model may be perspectively used for the identification of novel pathway-based antimalarial compounds.
Resumo:
Inflammatory bowel diseases are associated with increased risk of developing colitis-associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid-free fatty acid (EPA-FFA) reduces polyps formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA-FFA are unknown in CAC. We tested the effectiveness of substituting EPA-FFA, for other dietary fats, in preventing inflammation and cancer in the AOM-DSS model of CAC. The AOM-DSS protocols were designed to evaluate the effect of EPA-FFA on both initiation and promotion of carcinogenesis. We found that EPA-FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA-FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β-catenin expression, whilst it increased apoptosis. In both arms, EPA-FFA treatment led to increased membrane switch from ω-6 to ω-3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA-FFA treated arms and AOM-DSS controls. Importantly, we found that EPA-FFA treatment restored the loss of Notch signaling found in the AOM-DSS control, resulted in the enrichment of Lactobacillus species in the gut microbiota and led to tumor suppressor miR34-a induction. In conclusion, our data suggest that EPA-FFA is an effective chemopreventive agent in CAC.
Resumo:
Der Free Fatty Acid Receptor 1 (FFAR1) ist ein G-Protein gekoppelter Rezeptor, welcher neben einer hohen Expression im Gehirn auch eine verstärkte Expressionsrate auf den β-Zellen des Pankreas aufweist. Diese Expressionsmuster machen ihn zu einem idealen Target für die Visualisierung der sogenannten β-Zell-Masse mittels molekularer bildgebender Verfahren wie der PET. Eine Entwicklung geeigneter Radiotracer für die β-Zell-Bildgebung würde sowohl für die Diagnostik als auch für die Therapie von Typ-1- und Typ-2-Diabetes ein wertvolles Hilfsmittel darstellen.rnAufbauend auf einem von Sasaki et al. publiziertem Agonisten mit einem vielversprechendem EC50-Wert von 5,7 nM wurden dieser Agonist und zwei weitere darauf basierende 19F-substituierte Moleküle als Referenzverbindungen synthetisiert (DZ 1-3). Für die 18F-Markierung der Moleküle DZ 2 und DZ 3 wurden die entsprechenden Markierungsvorläufer (MV 1-3) synthetisiert und anschließend die Reaktionsparameter hinsichtlich Temperatur, Lösungsmittel, Basensystem und Reaktionszeit für die nukleophile n.c.a. 18F-Fluorierung optimiert. Die abschließende Entschützung zum fertigen Radiotracer wurde mit NaOH-Lösung durchgeführt und die Tracer injektionsfertig in isotonischer NaCl-Lösung mit radiochemischen Ausbeuten von 26,9 % ([18F]DZ 2) und 39 % ([18F]DZ 3) erhalten.rnZusätzlich wurde ein Chelator zur 68Ga-Markierung an den Liganden gekoppelt (Verb. 46) und die Markierungsparameter optimiert. Nach erfolgter Markierung mit 95 % radiochemischer Ausbeute, wurde der Tracer abgetrennt und in vitro Stabilitätsstudien durchgeführt. Diese zeigten eine Stabilität von mehr als 90 % über 120 min in sowohl humanem Serum (37 °C) als auch isotonischer NaCl-Lösung.rnMit einem ebenfalls synthetisierten fluoreszenzmarkierten Derivat des Liganden (Verb. 43) wurden erste LSM-Bilder an sowohl Langerhansschen Inseln als auch FFAR1-tragenden RIN-M Zellen durchgeführt, welche einen vielversprechenden Uptake des neuen Liganden in die Zellen zeigen. Weitere Untersuchungen und biologische Evaluierungen stehen noch aus. Mit den Referenzsubstanzen wurden zusätzlich Vitalitätsstudien an Langerhansschen Inseln durchgeführt, um einen negativen toxischen Einfluss auszuschließen.rn
Resumo:
Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
Milk fatty acid (FA) profile is a dynamic pattern influenced by lactational stage, energy balance and dietary composition. In the first part of this study, effects of the energy balance during the proceeding lactation [weeks 1-21 post partum (pp)] on milk FA profile of 30 dairy cows were evaluated under a constant feeding regimen. In the second part, effects of a negative energy balance (NEB) induced by feed restriction on milk FA profile were studied in 40 multiparous dairy cows (20 feed-restricted and 20 control). Feed restriction (energy balance of -63 MJ NEL/d, restriction of 49 % of energy requirements) lasted 3 weeks starting at around 100 days in milk. Milk FA profile changed markedly from week 1 pp up to week 12 pp and remained unchanged thereafter. The proportion of saturated FA (predominantly 10:0, 12:0, 14:0 and 16:0) increased from week 1 pp up to week 12 pp, whereas monounsaturated FA, predominantly the proportion of 18:1,9c decreased as NEB in early lactation became less severe. During the induced NEB, milk FA profile showed a similarly directed pattern as during the NEB in early lactation, although changes were less marked for most FA. Milk FA composition changed rapidly within one week after initiation of feed restriction and tended to adjust to the initial composition despite maintenance of a high NEB. C18:1,9c was increased significantly during the induced NEB indicating mobilization of a considerable amount of adipose tissue. Besides 18:1,9c, changes in saturated FA, monounsaturated FA, de-novo synthesized and preformed FA (sum of FA >C16) reflected energy status in dairy cows and indicated the NEB in early lactation as well as the induced NEB by feed restriction.
Resumo:
ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized.
Resumo:
Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.
Resumo:
Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.