887 resultados para fast Fourier-transform algorithm
Resumo:
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed. (C) 2008 Published by Elsevier Inc.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
New organic/inorganic (O/I) hybrid assemblies based on Layered Double Hydroxide (LDH) with polyamide amine dendrimer (PAMAM, generation -0.5 and generation +0.5) were prepared by two different routes using either the direct coprecipitation at constant pH or the anion exchange procedure in double surfactant S(+)S(-) phases. The obtained materials were characterized by means of powder X-ray diffraction, thermal gravimetric analysis associated with mass spectrometry, and Fourier-transform infrared spectroscopy. X-ray powder diffraction pattern of the O/I LDH assembly exhibit characteristic profiles of LDH-based materials with basal spacing depending on the nature of the dendrimer. Indeed, for both synthetic procedures, interleaved PAMAM -0.5 gives rise to an interlayer space in agreement with a perpendicular molecular arrangement against the layer of the host structure. For PAMAM+0.5, considering its spherical dimension, a much smaller basal spacing was observed. This observation was interpreted as shrinkage of the molecule to accommodate the interlayer LDH gap, which was rendered possible by the bond angle twisting within PAMAM-0.5. FTIR spectra confirm the presence of both moieties inside both Zn(2)Al/PAMAM G-0.5 and Zn(2)Al/PAMAM G+0.5 assemblies. Finally, thermal analysis associated with mass spectrometry confirm this composition, and in situ temperature XRD data reveal that the highly constrained arrangement for the generation +0.5 is not accompanied by a gain in thermal structural stability; in fact, the assembly prepared from PAMAM -0.5 is more stable. Both O/I PAMAM LDH assemblies constitute well-defined materials which are candidate for catalytic applications.
Resumo:
Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010
Resumo:
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAR) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAR and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.
Resumo:
Cell-wall polysaccharides from six species of red algae of the genus Callophycus were mainly galactans comprised predominantly of galactose (Gal) and 3,6-anhydrogalactose (AnGal), and were rich in pyruvate and sulfate. The Fourier Transform Infrared (FTIR) spectra of the polysaccharides superficially resembled that of alpha-carrageenan (composed of the repeating disaccharide carrabiose 2-sulfate), with major bands of absorption indicative of if-linked AnGal, axial 2-sulfate on 4-linked AnGal, and unsulfated, 3-linked Gal. The FTIR spectra of solutions of Callophycus polysaccharides in D2O-phosphate buffer displayed absorption, corresponding to the carboxylate anion of the pyruvate acetal substituent. Methylation analysis showed that 3,4,6-linked Galp (interpreted as 4,6-pyruvated, 3-linked Galp) and 2,4-linked AnGalp (interpreted as 4-linked AnGalp 2-sulfate) were the dominant links, together with significant quantities of 3-linked Galp. Proton-decoupled C-13 nuclear magnetic resonance (NMR) spectroscopy showed the polysaccharides to be composed predominantly of pyruvated carrageenans. The C-13 NMR spectra were completely assigned by a J-modulated spin-echo pulse sequence and 2D experiments employing gradient Heteronuclear Multiple Bond Correlation (HMBC), C-13/H-1 Heteronuclear Multiple Quantum Coherence (HMQC), and HMQC Total Correlation Spectroscopy (HMQC-TOCSY). The Callophycus galactans thus consist predominantly of the novel repeating disaccharide 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate and minor amounts of the alpha-carrageenan repeating unit (carrabiose 2-sulfate), and other structural variations. (C) 1997 Elsevier Science Ltd.
Resumo:
Normorphine was synthesised from morphine by thermal decomposition of an N-alpha-chloroethylchloroformate adduct, and purified (> 98% purity) using semipreparative HPLC with ultraviolet detection. Normorphine-3-glucuronide (NM3G) was biochemically synthesised using the substrate normorphine, uridine diphosphoglucuronic acid and Sprague-Dawley rat liver microsomes in a 75% yield (relative to normorphine base). The synthesised NM3G was purified by precipitation and washing with acetonitrile. Determinations of purity using HPLC with electrochemical and ultraviolet detection confirmed that the NM3G produced was of high (> 99%) purity. Mass spectrometry, fourier transform infrared spectrophotometry and nuclear magnetic resonance spectrometry confirmed the structure, especially placement of the glucuronide moiety at the 3-phenolic position and not at the 17-nitrogen. Administration of NM3G by the intracerebroventricular (icy) route to rats in doses of 2.5 and 7.5 mu g resulted in the development of central nervous system (CNS) excitatory behavioural effects including myoclonus, chewing, wet-dog shakes, ataxia and explosive motor behaviour. At an icy dose of 7.5 mu g, NM3G also induced short periods of tonic-clonic convulsive activity. Thus, NM3G elicits CNS excitation following supraspinal administration in a manner analogous to morphine-3-glucuronide (M3G), the major metabolite of morphine (1). Further studies are required to determine whether NM3G attenuates morphine-induced antinociception in se similar manner to M3G.
Resumo:
Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).
Resumo:
For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
Near-Resonant Holographic Interferometry is a powerful technique which extends the established advantages of conventional holographic interferometry by allowing a species-specific number density to be determined. It has been tested in the harsh flow conditions generated in a high enthalpy facility yielding information about the shock shape on a cylindrical body and on the distribution of a trace species seeded into the flow.
Resumo:
Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Two polymer-montmorillonite (MMT) nanocomposites have been synthesized by in situ intercalative polymerization. The styrene monomer is intercalated into the interlayer space of organically modified MMT, a layered clay mineral. Upon the intercalation, the complex is subsequently polymerized in the confinement environment of the interlayer space with a free radical initiator, 2,2-azobis isobutyronitrile. The aniline monomer is also intercalated and then polymerized within the interlayer space of sodium- and copper-MMT initiated by ammonium peroxodisulphate and interlayer copper cations respectively. X-ray diffraction indicates that the MMT layers are completely dispersed in the polystyrene matrix and an exfoliated structure has been obtained. The resulting polyaniline-MMT nanocomposites show a highly ordered structure of a single polyaniline layer stacked with the MMT layers. Fourier transform infrared spectra further confirm the intercalation and formation of both polymer-MMT nanocomposites.
Resumo:
Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.