418 resultados para fallout shelters
Geological map of Potter Peninsula (King George Island, South Shetland Islands, Antarctic Peninsula)
Resumo:
We present here a new geological map of Potter Peninsula (King George Island, South Shetland Islands). Like on adjacent Barton Peninsula, the morphology on Potter Peninsula is predominantly characterized by a glacial landscape with abrasion platforms offshore, in parts steep cliffs along the coast, and a rather smooth, hilly countryside in the interior. Potter Peninsula forms part of the downthrown Warszawa Block. The volcanic sequence cropping out here belongs to the King George Island Supergroup, with an observed local minimum thickness of approx. 90 m (Kraus 2005). The most prominent morphological feature is Three Brothers Hill (196 m), a well known andesitic plug showing conspicuous columnar jointing. It marks the final stage of activity of a Paleogene volcano, whose eruption products (lava flows and pyroclastic rocks), together with hypabyssal intrusions related to the volcanism, make up most of the lithology observed on Potter Peninsula (Kraus 2005). The Three Brothers Hill volcanic complex is eroded down to its deepest levels. Thus, the stratigraphically deepest units from the initial phase of volcanic activity are cropping out in some parts (Kraus & del Valle, in Wienke et al. 2008). The lithology on Potter Peninsula comprises lava flows (~50%), pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic breccia and agglomerates, ~30%) and hypabyssal intrusions (dykes, sills and small subvolcanic intrusive bodies, ~20%). 40Ar/39Ar datings carried out on magmatic dykes from Potter Peninsula indicate a short, but intense intrusive event during the Lutetian (Kraus et al. 2007).
Resumo:
More than 50 discrete volcanic ash layers were recovered at the five drill sites of the Blake Nose depth transect (Leg 171B, western central Atlantic). The majority of these ash layers are intercalated with Eocene hemipelagic sediments with a pronounced frequency maximum in the upper Eocene. Several ash layers appear to be deposited from volcanic fallout with little or no indication of secondary remobilization. They provide excellent stratigraphic markers for a correlation of the Leg 171B drill sites. Other ash layers were probably redeposited from volcaniclastic-rich turbidity currents, but they still represent geologically instantaneous events that can be used in stratigraphic correlation between adjacent drill holes. Additional nonvolcanic marker beds, like the suspect late Eocene impact event layer, were included in our hole-to-hole correlations. Stratigraphic and downcore positions of marker beds were compiled and plotted against existing composite depth records that were constructed to guide high-resolution sampling. Comparison of our correlation with the spliced composite sections of each drill site reveals several minor and some major discrepancies. These may result from drilling distortion or missing sections, from the lack of unambiguous criteria for the synchronism of ash layers, or from the systematic exclusion of marker-bed data in the construction of the spliced record. Integration of both correlation approaches will help eliminate most of the observed discrepancies.
Resumo:
The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.
Resumo:
Two decades ago, Merrihue (1964) reported 3He/4He ratios of >10**-4 in ferromagnetic separates from a Pacific deep ocean red clay and concluded that the high ratio is due to extraterrestrial debris amounting to ~1% of the sediment. A decade later Krylov et al. (1973) compiled 3He/4He isotopic data on ocean sediments measured in the Soviet Union and observed that the 3He/4He ratio is generally higher in pelagic sediments where the sedimentation rate is lower. They suggested that the high 3He/4He ratio was attributable to extraterrestrial materials which were concentrated in slowly accumulating ocean floor. However, these important discoveries were almost completely neglected until we re-examined the problem. We have measured 39 sediments from 12 different sites, 10 sites from the western to central Pacific and two sites from the Atlantic Ocean. We find 3He/4He ratios >5 * 10**-5 for six sites, well above the values generally observed in common terrestrial materials. The very high 3He/4He ratio in the sediments is probably due to input of extraterrestrial materials. Input of stratospheric dust of <1 p.p.m., which corresponds to a fallout rate of ~2,000 tons per year, can explain the observation.
Resumo:
Gravity cores obtained from isolated seamounts located within, and rising up to 300 m from the sediment-filled Peru-Chile Trench off Southern Central Chile (36°S-39°S) contain numerous turbidite layers which are much coarser than the hemipelagic background sedimentation. The mineralogical composition of some of the beds indicates a mixed origin from various source terrains while the faunal assemblage of benthic foraminifera in one of the turbidite layers shows a mixed origin from upper shelfal to middle-lower bathyal depths which could indicate a multi-source origin and therefore indicate an earthquake triggering of the causing turbidity currents. The bathymetric setting and the grain size distribution of the sampled layers, together with swath echosounder and sediment echosounder data which monitor the distribution of turbidites on the elevated Nazca Plate allow some estimates on the flow direction, flow velocity and height of the causing turbidity currents. We discuss two alternative models of deposition, both of which imply high (175-450 m) turbidity currents and we suggest a channelized transport process as the general mode of turbidite deposition. Whether these turbidites are suspension fallout products of thick turbiditic flows or bedload deposits from sheet-like turbidity currents overwhelming elevated structures cannot be decided upon using our sedimentological data, but the specific morphology of the seamounts rather argues for the first option. Oxygen isotope stratigraphy of one of the cores indicates that the turbiditic sequences were deposited during the last Glacial period and during the following transition period and turbiditic deposition stopped during the Holocene. This climatic coupling seems to be dominant, while the occurrence of megathrust earthquakes provides a trigger mechanism. This seismic triggering takes effect only during times of very high sediment supply to the shelf and slope.
Resumo:
"Fallout Studies Branch, Division of Biology and Medicine, AEC."
Resumo:
Mode of access: Internet.
Resumo:
"TR-82."
Resumo:
Cover title.
Resumo:
"Prepared for Presentation at the Hearings on Fallout Before the Joint Committee on Atomic Energy, May 5-8, 1959."
Resumo:
"Health and Safety."
Resumo:
"Health and Safety."
Resumo:
Item 925
Resumo:
"3-16-50--575-A18845."
Resumo:
Prepared for the U.S Atomic Energy Commission.